##plugins.themes.bootstrap3.article.main##

Shreshtha Mehta Madhulika Esther Prasad Vijay Jagdish Upadhye Siddharth Goswami Pallavi Singh

Abstract

Ever since the start of the Industrial Revolution, environmental pollution has significantly increased. The prominent cause of most diseases in humans, animals, and plants is the presence of toxic materials, pollutants, contaminants, and hazardous compounds released by industries. One of the major factors is the presence of heavy metals in the air, water bodies and soil. Heavy metals have biomagnification and bioaccumulation characteristics, making them hazardous for flora and fauna on a large scale. Recently, biological sources such as bacteria, fungi, algae, etc., have been used to bioabsorb these heavy metals. The microbial properties of these cell walls are utilized for effective and low-cost absorption of metals. Bioaugmentation, biosorption and biostimulation are effective strategies for reducing the toxicity of hazardous contaminants in the soil and facilitating bioremediation. The mechanism of biosorption is mainly based on ions and functional groups present in the microbes. Fungal species are advantageous over bacteria as they are easier to handle, cost-effective and, most importantly, non-pathogenic, making them ideal candidates for biosorption. This review provides a comprehensive overview of various microbial strains utilized in bioremediation. Further, the review highlights the application of nanotechnology and metabolic engineering approaches to improve the efficacy of Biosorption, Biostimulation and Bioaugmentation. It provides insights on the role of microbial nanoparticles in bioremediation and prospects in the forte of microbe-assisted bioremediation.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Bioaugmentation, Bioremediation, Biostimulation, Metabolic Engineering, Nanotechnology

References
Alahmadi, N. (2022). Recent progress in photocatalytic removal of environmental pollution hazards in water using nanostructured materials. Separations, 9(10), 264. https://doi.org/10.3390/separations9100264
Ali, R., Bashir, K., Ahmad, S., Ullah, A., Shah, S. F., Ali, Q., Yasmin, H. & Ahmad, A. (2023). Bioremediation of heavy metals from industrial effluents using Bacillus pakistanensis and Lysinibacillus composti. Sustainability, 15(9), 7591. https://doi.org/10.3390/su15097591
Amobonye, A., Aruwa, C. E., Aransiola, S., Omame, J., Alabi, T. D. & Lalung, J. (2023). The potential of fungi in the bioremediation of pharmaceutically active compounds: a comprehensive review. Frontiers in Microbiology, 14, 1207792. https://doi.org/10.3389/fmicb.2023.1207792
Atuchin, V. V., Asyakina, L. K., Serazetdinova, Y. R., Frolova, A. S., Velichkovich, N. S. & Prosekov, A. Y. (2023). Microorganisms for bioremediation of soils contaminated with heavy metals. Microorganisms, 11(4), 864. https://doi.org/10.3390/microorganisms11040864
Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M.(2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics.19;10(8):484. https://doi.org/10.3390/toxics10080484
Borkar, S. G. (2023). Ergot alkaloids as pharmaceuticals: Status and prospects of commercial cultivation of ergot crop for natural alkaloids. Magna Scientia Advanced Biology and Pharmacy, 10(2), 080-089. Doi:10.30574/msabp.2023.10.2.0083
Coetzee, J. J., Bansal, N. & Chirwa, E. M. N. (2020). Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and Health, 12(1), 51-62. https://doi.org/10.1007/s12403-018-0284-z
Corrales, J., Ramos-Alonso, L., González-Sabín, J., Ríos-Lombardía, N., Trevijano-Contador, N., Engen Berg, H., Sve Skottvoll, F.,  Moris, F., Zaragoza, O.,  Chymkowitch, P., Garcia, I., Enserink, J. M. (2024). Characterization of a selective, iron-chelating antifungal compound that disrupts fungal metabolism and synergizes with fluconazole. Microbiology Spectrum, 12(2), e02594-23. DOI: https://doi.org/10.1128/spectrum.02594-23
Deng, R. X., Li, H. L., Wang, W., Hu, H. B. & Zhang, X. H. (2024). Engineering Pseudomonas chlororaphis HT66 for the biosynthesis of copolymers containing 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Journal of Agricultural and Food Chemistry. DOI: 10.1021/acs.jafc.4c00777
DesMarais, T. L. & Costa M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14, 1-7. DOI: 10.1016/j.cotox.2019.05.003
El-Kalliny, A. S., Abdel-Wahed, M. S., El-Zahhar, A. A., Hamza, I. A. & Gad-Allah, T. A. (2023). Nanomaterials: a review of emerging contaminants with potential health or environmental impact. Discover Nano, 18(1), 68. doi: 10.1186/s11671-023-03787-8
Elumalai, P., Parthipan, P., Gao, X., Cui, J., Kumar, A. S., Dhandapani, P., Rajasekar, A., Sarma, H., Ganapathy, N.R., Theerthagiri, J., Min, A. & Choi, M. Y. (2024). Impact of petroleum hydrocarbon and heavy metal pollution on coral reefs and mangroves: a review. Environmental Chemistry Letters, 1-23. DOI:10.1007/s10311-024-01728-0
Fayazi, M. (2020). Removal of mercury (II) from wastewater using a new and effective composite: sulfur-coated magnetic carbon nanotubes. Environmental Science And Pollution Research, 27(11), 12270-12279. DOI: 10.1007/s11356-020-07843-z
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782. doi: 10.3390/ijerph17113782
Goswami, S. & Gupta, A. (2020). An overview of COVID-19 pandemic along with historical epidemic, black death: their impact on the environment. International Journal of Pharmaceutical Research, 12(4), 09752366.
Goswami, S., Chamoli, P., Upadhye, V. J. & Sing, P. (2022a). Application of current technologies in theranostics for early-stage detection of prostate cancer. NeuroQuantology, 20(8), 6893. DOI:10.14704/nq.2022.20.8.NQ44716
Goswami, S. & Sharma, S. (2022b). DNA sequencing using artificial intelligence. In: 2022 International Conference on Edge Computing and Applications (ICECAA) (pp 1033-1037). IEEE.
Goswami, S., Sharma, S. & Kohli, P. (2024). Artificial intelligence techniques to reduce thermal pollution. In: 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE) (pp 1-6). IEEE. DOI: 10.1109/IITCEE59897.2024.10467413
Guerra, F. D., Attia, M. F., Whitehead, D. C. & Alexis, F. (2018). Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 23(7), 1760. https://doi.org/10.3390/molecules23071760
Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. (2021). Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887
Hao, D. C., Li, X. J., Xiao, P. G. & Wang, L. F. (2020). The utility of electrochemical systems in microbial degradation of polycyclic aromatic hydrocarbons: discourse, diversity and design. Frontiers in Microbiology, 11, 557400. https://doi.org/10.3389/fmicb.2020.557400
Ijoma, G. N., Selvarajan, R., Oyourou, J. N., Sibanda, T., Matambo, T., Monanga, A. & Mkansi, K. (2019). Exploring the application of biostimulation strategy for bacteria in the bioremediation of industrial effluent. Annals of Microbiology, 69(5), 541-551. https://doi.org/10.1007/s13213-019-1443-6
Imron, M. F., Kurniawan, S. B. & Soegianto, A. (2019). Characterization of mercury-reducing potential bacteria isolated from Keputih non-active sanitary landfill leachate, Surabaya, Indonesia under different saline conditions. Journal of Environmental Management, 241, 113-122. DOI: 10.1016/j.jenvman.2019.04.017
Jo, C., Zhang, J., Tam, J. M., Church, G. M., Khalil, A. S., Segre, D. & Tang, T. C. (2023). Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Materials Today Bio, 19, 100560. doi: 10.1016/j.mtbio.2023.100560
Kaur S, Kamli MR, Ali A. (2011). Role of arsenic and its resistance in nature. Can J Microbiol. ;57(10):769-74. doi: 10.1139/w11-062
Khalil, O. A. A. & Omara, M. A. (2023). Optimizing rapid pentachlorophenol biodegradation using response surface methodology. Bioremediation Journal, 27(4), 325-344. DOI:10.1080/10889868.2022.2086528
Khan, F., Momtaz, S. & Abdollahi, M. (2019). The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. Journal of Trace Elements in Medicine and Biology, 52, 37-47. doi: 10.1016/j.jtemb.2018.11.006
Khan, M. S. A. (2024). Applications of bioremediation in biomedical waste management: current and future prospects. Brazilian Archives of Biology and Technology, 67, e24230161. DOI: 10.1590/1678-4324-2024230161
Kilonzi, J. M. & Otieno, S. (2024). Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation. Stress Biology, 4(1), 1-16. doi: 10.1007/s44154-023-00138-6
Kuivenhoven, M. & Mason, K. (2023). Arsenic toxicity. In: StatPearls Publishing. Treasure Island (FL). PMID: 31082169.
Kumar, A., Kumar, A., Cabral-Pinto, M. M. S., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S., A Khan, S. & Yadav, K. K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7), 2179. DOI: 10.3390/ijerph17072179
Kumar, N., Mishra, B. K., Liu, J., Mohan, B., Thingujam, D., Pajerowska-Mukhtar, K. M., & Mukhtar, M. S. (2023). Network biology analyses and dynamic modeling of gene regulatory networks under drought stress reveal major transcriptional regulators in arabidopsis. International Journal of Molecular Sciences, 24(8), 7349. DOI: 10.3390/ijms24087349
Liu Xiutao, Zhao Guang, Sun Shengjie, Fan Chuanle, Feng Xinjun, Xiong Peng. (2022). Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Frontiers in Bioengineering and Biotechnology, 10. doi: 10.3389/fbioe.2022.843887
Lopes, P. R. M, Cruz, V.H., De Menezes, A. B., Gadanhoto, B. P., Moreira, B. R., Mendes, C. R., Mazzeo, D. E., Dilarri, G. & Montagnolli, R. N. (2022). Microbial bioremediation of pesticides in agricultural soils: an integrative review on natural attenuation, bioaugmentation and biostimulation. Reviews in Environmental Science and Bio/Technology, 21(4), 851-876. DOI:10.1007/s11157-022-09637-w
Mahdizade Ari, M., Dadgar, L., Elahi, Z., Ghanavati, R. & Taheri, B. (2024). Genetically engineered microorganisms and their impact on human health. International Journal of Clinical Practice, 2024. https://doi.org/10.1155/2024/6638269
Mei, S., Bian, W., Yang, A., Xu, P., Qian, X., Yang, L., Shi, X. & Niu, A. (2024). The highly effective cadmium-resistant mechanism of Pseudomonas aeruginosa and the function of pyoverdine induced by cadmium. Journal of Hazardous Materials, 133876. https://doi.org/10.1016/j.jhazmat.2024.133876
Mekontchou, O. Y., Zhenhua, Z., Nkoh, J. N., Ymele, E. & Usman, M. (2024). A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. Science of The Total Environment, 171577. DOI: 10.1016/j.scitotenv.2024.171577
Mitra, S., Chakraborty, A. J. & Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman H, Alhumaydhi, F. A. & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. Journal of King Saud University Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
Modwi, A., Basith, N. M., Ghoniem, M. G., Ismail, M., Aissa, M. B., Khezami, L. & Bououdina, M. (2023). Efficient Pb (II) adsorption in aqueous solution by hierarchical 3D/2D TiO2/CNNS nanocomposite. Materials Science and Engineering: B, 289, 116191. DOI:10.1016/j.mseb.2022.116191
Mohapatra, B., Dhamale, T., Saha, B. K. & Phale, P. S. (2022). Microbial degradation of aromatic pollutants: metabolic routes, pathway diversity, and strategies for bioremediation. In: Microbial biodegradation and bioremediation (pp 365-394). Elsevier. DOI:10.1016/B978-0-323-85455-9.00006-0
Mondal, S., Mukherjee, S. K. & Hossain, S. T. (2023). Exploration of plant growth promoting rhizobacteria (PGPRs) for heavy metal bioremediation and environmental sustainability: Recent advances and future prospects. Modern Approaches in Waste Bioremediation: Environmental Microbiology, 29-55. DOI:10.1007/978-3-031-24086-7_3
Muzaffar, S., Khan, J., Srivastava, R., Gorbatyuk, M. S. & Athar, M. (2023). Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biology and Toxicology, 39(1), 85-110. DOI: 10.1007/s10565-022-09710-8
Narayanan, M., Ali, S. S. & El-Sheekh, M. (2023). A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. Journal of Environmental Management, 334, 117532. DOI: 10.1016/j.jenvman.2023.117532
Negi, S., Singh, V., Rawat, J. . (2021). GREEN SYNTHESIS OF SILVER NANOPARTICLES USING MICROALGAL EXTRACT AND ITS APPLICATION IN METAL ION REMOVAL FROM AQUEOUS SOLUTION. Journal of Experimental Biology and Agricultural Sciences, 9(2), 214–230.https://doi.org/10.18006/2021.9(2).214.230
Njoku, K. L., Akinyede, O. R. & Obidi, O. F. (2020). Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifera. Scientific African, 10, e00545. https://doi.org/10.1016/j.sciaf.2020.e00545
Novik, G., Savich, V. & Meerovskaya, O. (2019) Geobacillus Bacteria: potential commercial applications in industry, bioremediation, and bioenergy production. Grow Handling Bacterial Cultures. DOI:10.5772/intechopen.76053
Panwar, V., Lzaod, S. & Dutta, T. (2023). Thermostable bacterial laccase: catalytic properties and its application in biotransformation of emerging pollutants. ACS Omega, 8(38), 34710-34719. doi: 10.1021/acsomega.3c03627
Pakulska D, Czerczak S.(2006). Hazardous effects of arsine: a short review. Int J Occup Med Environ Health.;19(1):36-44. doi: 10.2478/v10001-006-0003-z.
Prajapati, D., Bhatt, A., Gupte, A. & Gupte, S. (2022). Fungi: a sustainable and versatile tool for transformation, detoxification, and degradation of environmental pollutants. In: Progress in Mycology: Biology and Biotechnological Applications (pp 593-619). Springer Nature, Singapore. DOI:10.1007/978-981-16-3307-2_20
Priyadarshanee, M. & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineerng, 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686
Rahman, M. S., Islam, S. M. M., Haque, A. & Shahjahan, Md. (2020). Toxicity of the organophosphate insecticide Sumithion to embryo and larvae of zebrafish. Toxicol Rep., 7, 317-323. doi: 10.1016/j.toxrep.2020.02.004
Raj, D. & Maiti, S. K. (2019). Sources, toxicity, and remediation of mercury: an essence review. Environmental Monitoring and Assessment, 191(9), 566. DOI: 10.1007/s10661-019-7743-2
Ren, J., Xu, C., Li, C., Deng, L., Dong, L., Wang, C., Huhe, T. & Niu, D. (2023). Effects of adding thermally treated penicillin mycelial dreg on the lignocellulose degradation, fungal diversity, and fertilizer efficiency of compost. Waste and Biomass Valorization, 14(6), 1879-1889. DOI:10.1007/s12649-022-01985-6
Russo, P., Zarour, K., Llamas-Arriba, M. G., Besrour-Aouam, N., Capozzi, V., De Simone, N., Lopez, P. & Spano, G. (2023). Biotechnological applications of sourdough lactic acid bacteria: a source for vitamins fortification and exopolysaccharides improvement. In: Sourdough Innovations (pp 231-262). CRC Press. eBook ISBN9781003141143
Seyfi, R., Kahaki, F. A., Ebrahimi, T., Montazersaheb, S., Eyvazi, S., Babaeipour, V. & Tarhriz, V. (2020). Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. International Journal of Peptide Research and Therapeutics, 26, 1451-1463. DOI:10.1007/s10989-019-09946-9
Shahjahan, Md., Taslima, K., Rahman, M. S., Al-Emran, Md., Alam, S. I. & Faggio, C. (2022). Effects of heavy metals on fish physiology – A review. Chemosphere.300, 134519. DOI: 10.1016/j.chemosphere.2022.134519
Sharma, M., Agarwal, S., Agarwal Malik, R., Kumar, G., Pal, D. B., Mandal, M., Sarkar, A., Bantun, F., Haque, S., Singh, P., Srivastava, N. & Gupta, V. K. (2023). Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered, 14(1), 2184518. doi: 10.1080/21655979.2023.2184518
Singh, A., Kumari, R. & Yadav, A. N. (2021). Fungal secondary metabolites for bioremediation of hazardous heavy metals. Recent trends in mycological research: Volume 2. Environmental and industrial perspective, 65-98. DOI:10.1007/978-3-030-68260-6_4
Tao, L., Chiarelli, M. P., Pavlova, S., Kolokythas, A., Schwartz, J., DeFrancesco, J., Salameh, B., Green, S. J. & Adami, G. (2024). Enrichment of polycyclic aromatic hydrocarbon metabolizing microorganisms on the oral mucosa of tobacco users. PeerJ, 12, e16626. doi: 10.7717/peerj.16626
Thakker, C., Zhu, J., San, K. Y., & Bennett, G. (2011). Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production. Journal of biotechnology, 155(2), 236-243. doi: 10.1016/j.jbiotec.2011.05.001
Thu, N. T. T., Hoang, L. H., Cuong, P. K., Viet-Linh, N., Nga, T. T. H., Kim, D. D., Leong, Y. K. & Nhi-Cong, L. T. (2023). Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in vietnam. Scientific Reports, 13(1), 3137. DOI: 10.1038/s41598-023-28220-z
Vazquez-Nunez, E., Molina-Guerrero, C. E., Pena-Castro, J. M., Fernandez-Luqueno, F., de la Rosa-Álvarez, M. G. (2020). Use of nanotechnology for the bioremediation of contaminants : a review. Processes, 8(7), 826. https://doi.org/10.3390/pr8070826
Vidal-Verdu, À., Gomez-Martínez, D., Latorre-Perez, A., Pereto, J. & Porcar, M. (2022). The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. npj Biofilms Microbiomes, 8(1), 32. doi:10.1038/s41522-022-00299-8.
Vishwakarma, G. S., Bhattacharjee, G., Gohil, N. & Singh, V. (2020). Current status, challenges and future of bioremediation. In: Bioremediation of pollutants (pp 403-415). Elsevier. DOI:10.1016/B978-0-12-819025-8.00020-X
Wang, Y., Li, S., Wang, X., Xu, J., Li, T., Zhu, J., Yang, R., Wang, J., Chang, M. & Wang, L. (2021). Biochelator assisted phytoremediation for cadmium (Cd) pollution in paddy field. Sustainability. 13(21):12170. https://doi.org/10.3390/su132112170
Wrobel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K. & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. International Jjournal of Environmental Research and Public Health, 20(6), 4964. doi: 10.3390/ijerph20064964
Xu, H., Hao, R., Xu, X., Ding, Y., Lu, A. & Li, Y. (2021). Removal of hexavalent chromium by Aspergillus niger through reduction and accumulation. Geomicrobiol Journal. 38(1), 20-28. DOI:10.1080/01490451.2020.1807659
Zhang X, Jantama K, Shanmugam KT, Ingram LO. (2009) Reengineering Escherichia coli for Succinate Production in Mineral Salts Medium. Appl Environ Microbiol. Dec;75(24):7807-13. doi: 10.1128/AEM.01758-09.
Zhang, Y., Yun, J., Zabed, H. M., Dou, Y., Zhang, G., Zhao, M., Taherzadeh, M. J., Ragauskas, A., & Qi, X. (2023). High-level co-production of 3-hydroxypropionic acid and 1, 3-propanediol from glycerol: Metabolic engineering and process optimization. Bioresource Technology, 369, 128438. DOI: 10.1016/j.biortech.2022.128438
Zheng, C., Xie, T., He, H. & Gao, S. (2021). Asymmetric Total Synthesis of PD-116740. Organic Letters, 23(2), 469-473. https://doi.org/10.1021/acs.orglett.0c03990
Zheng, N. A., Wang, S., Dong, W. U., Hua, X., Li, Y., Song, X., Chu, Q., Hou, S. & Li, Y. (2019). The toxicological effects of mercury exposure in marine fish. Bulletin of environmental contamination and toxicology, 102(5), 714-720. DOI: 10.1007/s00128-019-02593-2
Section
Research Articles

How to Cite

Enhancing efficacy of microbial bioremediation by intervention of nanotechnology and metabolic engineering: A review. (2024). Journal of Applied and Natural Science, 16(2), 741-751. https://doi.org/10.31018/jans.v16i2.5520