Allelopathic activity of Zea mays extracts on some physiological and anatomical features of corn and wheat cultivars
##plugins.themes.bootstrap3.article.main##
Abstract
Wheat is often planted directly after maize in fields following the maize harvest, and maize residues decompose in the soil by various biological factors, releasing phenolic compounds that affect the germination and growth of some crops planted with or after it. This research aimed to identify the effect of Zea mays leaf extract on seed germination physiological and anatomical features of Z. mays var. (Drachma, Mahali) and Triticum aestivum var. (Baraka, Abu Ghraib) . The results showed Z. mays leaf extract stimulated some traits germination (100%) in Drachama at control, plumule length (7.8cm) in Abu-Graib, radicle length (11.6cm) in Baraka at 2%, fresh weight of plumule and radical (0.0113, 0.0148gm) respectively in Drachama at control. There was highest reduction germination (60%) in Drachama at 6% extract [plumule length (1.0)cm, radicle length (4.2cm), fresh weight of plumule (0.0052cm) in Mahali at 4%], fresh weight of radical (0.00026gm) in Abu-Graib at 6%. There was a difference in response in greenhouse experiments. Anatomical traits of the two corn cultivars differed at 2% and 4% concentrations. The highest increase in germination (96.7%) was in Baraka at 4%, shoot length (22.1cm) in Drachama at 4%, fresh weight of root (0.254gm) in Abu-Graib at 4%, [root length (44cm), fresh weight of root (0.052 gm) in Abu-Graib at 4%], the highest reduction in germination (80%) in Abu-Graib, dry weight of root (23gm) in Abu-Graib at 2%. Using HPLC, compounds tannic acid, gallic acid, benzoic acid, and salicylic acid were identified from Z. mays L. extracts. The study will help to develop sustainable agricultural practices, such as crop rotation, to increase crop productivity and reduce reliance on chemicals.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Allelopathy, Corn, Extracts, Germination, Response physiological, Wheat, Zea mays
Abdul Khaliq, Amar, M., Muhammad, Z.I., Rana, N. A., Zubair, A. & Fahd. R. (2013). Supplementing Herbicides with Manual Weeding Improves Weed Control Efficiency, Growth and Yield of Direct Seeded Rice. International Journal of Agriculture and Biology 15(02),191-199.
Ahmed, H. M. (2018). Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species. Natural Product Research, 32(6), 714-718. doi:10.1080/14786419.2017.13 33992
Al-Hafith, F.A.A. Response of soft Wheat varieties to allelopathic activity of residues of three types of Cucurbateae family. Ph.D thesis/ College of science/ University of Mosul.
Anjum, T., & Bajwa, R. (2010). Sunflower phytochemicals adversely affect wheat yield. Natural Product Research, 24(9), 825-837.doi:10.1080/14786410902904426
Aulya, N. R., Noli, Z. A., & Bakhtiar, A. (2018). Effect of Plant Extracts on Growth and Yield of Maize (Zea mays L.). Pertanika Journal of Tropical Agricultural Science, 41(3).
Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K., & Gawronski, S. W. (2006). Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biologia Plantarum, 50, 156-158.
Choudhary, S. K., Singh, R. N., Upadhyay, P. K., Singh, R. K., Choudhary, H. R., & Vijay, P. (2014). Effect of vegetable intercrops and planting pattern of maize on growth, yield and economics of winter maize (Zea mays L.) in Eastern. Uttar Pradesh. Environment & Ecology, 32(1), 101-105.
Cipollini, D., Rigsby, C. M., & Barto, E. K. (2012). Microbes as targets and mediators of allelopathy in plants. Journal of chemical ecology, 38, 714-727.doi:10.1007/s10886-012-0133-7
Deng, L. L., Lyu, P., Huang, X. Q., Zhang, Z., Wang, L. C., & Liu, Y. (2020). Allelopathic effects of water extracts from sweet potato on the growth of invasive alien species Alternanthera philoxeroides. Ying Yong Sheng tai xue bao = The Journal of Applied Ecology, 31(7), 2202-2210.
doi:10.13287/j.1001-9332.202007.020
Flayyih, T. M. & Almarie, A. A. (2022). Allelopathic effect of sunflower residues on some soil properties and growth parameters of wheat, bean and flax crops. Revis Bionata, 7, 38. doi:10.21931/RB/2022.07.04.38
Hussein, W.S., Saeed, G.A., & Al-Mathedy, A.M. (2018). Detection of active compounds in residues some species of plant, isolation and diagnosis of allelopathic compounds using HPLC technique. Rafidain Journal of Science, 27(5), 32-40. doi:10.33899/rjs.2018.159345
Ibrahim, M., Ahmad, N., Shinwari, Z. K., Bano, A., & Ullah, F. (2013). Allelopathic assessment of genetically modified and non modified maize (Zea mays L.) on physiology of wheat (Triticum aestivum L.). Pak. J. Bot, 45(1), 235-240.
Iman Radha, J., Rawnaq Ahmed, I., & Hala Muzher, Y. (2023). Physiological responses of Helianthus anuus L. plants under allelopathic effect of Cucurbita moschata. Revis Bionatura, 8(3), 108.doi:10.21931/RB/2023.08.03.108
International Grains Council (international organization) (2013). International Grains Council Market Report , 28 November.
Kalisz, S., Kivlin, S. N. & Bialic-Murphy, L. (2021). Allelopathy is pervasive in invasive plants. Biological Invasions, 23, 367-371.doi:10.1007/s10530-020-02383-6
Kannah, A. M., & Shihab, H. F. (2017). Heavy Metals Levels in the Water of the Tigris River in the City of Mosul, Iraq.
Ming, Y., Hu, G. X., Li, J., Zhu, Z. J., Fan, X. M. & Yuan, D. Y. (2020). Allelopathic Effects of Castanea henryi Aqueous Extracts on the Growth and Physiology of Brassica pekinensis and Zea mays. Chemistry & biodiversity, 17(6), e2000135.doi:10.1002/cbdv.202000135
Muhammad, Z., & Majeed, A. (2014). Allelopathic effects of aqueous extracts of sunflower on wheat (Triticum aestivum L.) and maize (Zea mays L.). Pakistan Journal of Botany, 46(5), 1715-1718.
Nikneshan, P., Karimmojeni, H., Moghanibashi, M., & al Sadat Hosseini, N. (2011). Allelopathic potential of sunflower on weed management in safflower and wheat. Australian journal of crop science, 5(11), 1434-1440.
Pannacci, E., Pettorossi, D., & Tei, F. (2013). Phytotoxic effects of aqueous extracts of sunflower on seed germination and growth of Sinapis alba L., Triticum aestivum L. and Lolium multiflorum Lam. Allelopathy Journal, 32(1), 23.
Radovanović, B., Mladenović, J., Radovanović, A., Pavlović, R., & Nikolić, V. (2015). Phenolic composition, antioxidant, antimicrobial and cytotoxic activites of Allium porrum L.(Serbia) extracts. J. Food Nutr. Res, 3(9), 564-569.
Saeed, J., & K Ibraheem, F. (2008). The Effect of Eucalyptus and Orange Leaves Added to the Soil on Germination and Growth of Four Ornamental Plants. Rafidain Journal of Science, 19(2), 15-25.
Salimpour, S. I., Khavazi, K., Nadian, H., Besharati, H., & Miransari, M. (2010). Enhancing phosphorous availability to canola ('Brassica napus' L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science, 4(5), 330-334.
Shah, S.M.R., Hameed, M., Basharat, S., Ahmad, M.S.A., & Ahmad, F. (2023). Allelochemicals extract of star fruit (Averrhoa carambola L.) modulates wheat growth through alterations in anatomical architecture. Crop & Pasture Science, 74(5), 423–437.doi:10.1071/CP22373
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)