##plugins.themes.bootstrap3.article.main##

Nursalmeeyah Etae Tanyarath Utaipan Eaknarin Ruangrak Weeraya Khummueng

Abstract

Artificial light sources in plant factories offer numerous advantages over traditional plant production. Optimal artificial lighting systems will provide sufficient light to promote plant growth. Thus, this study aimed to determine different artificial light sources on plant growth, especially on internode length, root length, potassium (K), Calcium (Ca), and magnesium (Mg) contents of green oak lettuce (Lactuca sativa L.). Three artificial light sources were utilized in the plant factory: a fluorescent lamp (FL) typically used in plant factories and two light-emitting diodes (LED): bulb-LED and bar-LED lamps. Alternate periods of 12 h of light and dark were applied to the used factories. The results indicated that the lettuce grown under bulb-LED irradiation exhibited the lowest internode length and highest root length of green oak lettuce, regardless to light intensity and the higher photosynthetic photon flux density (PPFD) values of bulb-LED at the growing stage. K, Ca, and Mg contents in the lettuce shoot decreased in the order of K > Ca > Mg for all artificial light sources. The highest K, Ca, and Mg contents were 14.77±3.08, 4.77±0.92 and 108.14±9.36 mg/g dried weight (DW) obtained in lettuce grown under FL irradiation. Lower FL light intensity promotes nutrient deficiency, resulting in increased plant uptake. There was no significant difference in nutrient content between plants grown with bulb-LED and bar-LED. The K/Ca and K/Mg mole ratios were lowest in plants grown under FL irradiation. These findings suggest that FL can be used to control lettuce nutrient levels, whereas bulb-LED can be used to control lettuce growth.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Hydroponic, Lactuca sativa L., , Light spectrum, Morphology, Plant factory

References
Amoozgar, A., Mohammadi, A. & Sabzalian, M.R. (2017). Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition, and mineral element content of lettuce cv. Grizzly. Photosynthetica., 55, 85-95. https://doi.org/10.1007/s11099-016-0216-8
Camejo, D., Frutos, A., Mestre, C.T., del Carmen Piñero, M., Rivero, M.R. & Martínez, V. (2020). Artificial light impacts the physical and nutritional quality of lettuce plants. HEB., 61, 69-82. https://doi.org/10.1007/s13580-019-00191-z
Cho, J.Y., Yoo, K.S., Kim, J., Choi, B.J., & Oh, W. (2020). Growth and bioactive compounds of lettuce as affected by light intensity and photoperiod in a plant factory using external electrode fluorescent lamps. Hortic. Sci. Technol., 38(5), 645-659. https://doi.org/10.7235/HORT.20200059
Dutta Gupta, S., & Agarwal, A. (2017). Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment. In: Dutta Gupta, S. (Eds). Light Emitting Diodes for Agriculture., pp 1-25. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_1
Etae, N., Wamae, Y., Khummueng, W., Utaipan, T. & Ruangrak, E. (2020). Effects of artificial light sources on growth and phytochemicals content in green oak lettuce. Hort. bras., 38(2), 204-210. https://doi.org/10.1590/S0102-053620200213
Gao, Q., Liao, Q., Li, Q., Yang, Q., Wang, F. & Li, J. (2022). Effects of LED red and blue light component on growth and photosynthetic characteristics of coriander in plant factory. Hortic., 8(12), 1165. https://doi.org/10.3390/horticulturae8121165.
Huang, L., Bell, R.W., Dell, B. & Woodward, J. (2004). Rapid nitric acid digestion of plant material with an open-vessel microwave system. Commun. Soil Sci. Plant Anal., 35(3-4), 427-440. DOI: 10.1081/CSS-120029723
Kalra. Y. (1997). Handbook of reference methods for plant analysis. pp. 57-157. CRC press, New York. https://www.routledge.com/Handbook-of-Reference-Methods-for-Plant-Analysis/Kalra/p/book/9780367448004
Kang, W.H., Park, J.S., Park, K.S. & Eek, J. S. (2016). Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). HEB., 57, 573-579. https://doi.org/10.1007/s13580-016-0093-x
Li, R., He, Y., Chen, J., Zheng, S. & Zhuang, C. (2023). Research progress in improving photosynthetic efficiency. Int. J. Mol. Sci., 24, 9286. https://doi.org/10.3390/ijms24119286
Mengutay, M., Ceylan, Y., Kutman, U.B. & Cakmak, I. (2013). Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil., 368, 57-72. https://doi.org/10.1007/s11104-013-1761-6
Modarelli, G.C., Paradiso, R., Arena, C., De Pascale, S. & Van Labeke, M.-C. (2022). High light intensity from blue-red LEDs enhances photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Hortic., 8(2), 114. https://doi.org/10.3390/horticulturae8020114
Mohamed, S. J., Rihan, H. Z., Aljafer, N., & Fuller, M. P. (2021). The impact of light spectrum and intensity on the growth, physiology, and antioxidant activity of lettuce (Lactuca sativa L.). Plants (Basel, Switzerland)., 10(10), 2162. https://doi.org/10.3390/plants10102162
Mostofa, M.G., Rahman, Md.M., Ghosh, T.K., Kabir, A.H., Abdelrahman, M., Khan, Md.A.R., Mochida, K. & Tran, L-S.P. (2022). Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol. Biochem., 186, 279-289. https://doi.org/10.1016/j.plaphy.2022.07.011.
Naznin, M.T., Lefsrud, M., Gravel, V. & Azad, M.O.K. (2019). Blue light added with red leds enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants., 8(93), 1-12. https://doi.org/10.3390/plants8040093
Orsini, F., Pennisi, G., Zulfiqar, F. & Gianquinto, G. (2020). Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci., 85(5), 297-309. https://doi.org/10.17660/eJHS.2020/85.5.1
Pinho, P., Jokinen, K. & Halonen, L. (2017). The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Light. Res. Technol., 49, 866-881. https://doi.org/10.1177/1477153516642269
Rehman, M., Baloch, S. U., Bao, Y., Wang, B., Peng, D. & Lijun, L. (2017). Light-emitting diodes: whether an efficient source of light for indoor plants? Environ. Sci. Pollut. Res., 24, 24743-24752. https://doi.org/10.1007/s11356-017-0333-3
Ruangrak, E. & Khummueng, W. (2019). Effects of artificial light sources on accumulation of phytochemical contents in hydroponic lettuce. J. Hortic. Sci. Biotechnol., 94, 378-388. https://doi.org/10.1080/14620316.2018.1504630
Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M. & Hasanuzzaman, M. (2021). Abiotic stress and Reactive Oxygen Species: generation, signaling, and defense mechanisms. Antioxidants, 10, 277. https://doi.org/10.3390/antiox10020277
Shabala, S. & Hariadi, Y. (2005). Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta., 221, 56-65. https://doi.org/10.1007/s00425-004-1425-0
Sirinupong, M. (2017). Practical for soilless culture in Thailand. 4th Eds. Fram-up Design., pp. 45-62. Nonthaburi, Bangkok. https://koha.library.tu.ac.th/bib/709208
Tabbert, J.M., Schulz, H. & Krähmer, A. (2021). Increased plant quality, greenhouse productivity and energy efficiency with broad-spectrum led systems: A case study for Thyme (Thymus vulgaris L.). Plants., 10, 960. https://doi.org/10.3390/plants10050960
Tarakanov, G.I., Tovstyko, A.D., Lomakin, P.M., Shmakov, S.A., Sleptsov, N.N., Shmarev, N.A. & Ivlev, A.A. (2022). Effects of light spectral quality on photosynthetic activity biomass production, and carbon isotope fractionation in lettuce, Lactuca sativa L., plants. Plants., 11(3), 441. https://doi.org/10.3390/plants11030441
Tham, C.A.T., Zwe, Y.H. & Li, D. (2021). Microbial study of lettuce and agriculture water used for lettuce production at Singapore urban farms. Food Control., 126, 108065. https://doi.org/10.1016/j.foodcont.2021.108065.
Thor, K. (2019). Calcium—nutrient and messenger. Front. Plant Sci., 10, 2-7. https://doi.org/10.3389/fpls.2019.00440
Tränkner, M., Tavakol, E. & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant., 163, 414-431. https://doi.org/10.1111/ppl.12747
Urrestarazu, M., Nájera, C. & del Mar Gea, M. (2016). Effect of the spectral quality and intensity of light-emitting diodes on several horticultural crops. HortScience., 51(3), 268-271. https://doi.org/10.21273/HORTSCI.5 1.3.268
Wang, W., Liu, D., Qin, M., Xie, Z., Chen, R. & Zhang, Y. (2021). Effects of supplemental lighting on potassium transport and fruit coloring of tomatoes grown in hydroponics. Int. J. Mol. Sci., 22(5), 2687. https://doi.org/10.3390/ijms22052687
White, P. J. & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Ann. Bot., 105(7), 1073-1080. https://doi.org/10.1093/aob/mcq085.
Zhang, X., He, D. X., Niu, G. H., Yan, Z. N. & Song, J. X. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng., 11(2), 33-40. DOI: 10.25165/j.ijabe.20181102.3420
Section
Research Articles

How to Cite

Effect of artificial light sources on the growth of  green oak lettuce (Lactuca sativa L.) grown in plant factories. (2024). Journal of Applied and Natural Science, 16(3), 1376-1382. https://doi.org/10.31018/jans.v16i3.5513