References
Amoozgar, A., Mohammadi, A. & Sabzalian, M.R. (2017). Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition, and mineral element content of lettuce cv. Grizzly. Photosynthetica., 55, 85-95. https://doi.org/10.1007/s11099-016-0216-8
Camejo, D., Frutos, A., Mestre, C.T., del Carmen Piñero, M., Rivero, M.R. & Martínez, V. (2020). Artificial light impacts the physical and nutritional quality of lettuce plants. HEB., 61, 69-82. https://doi.org/10.1007/s13580-019-00191-z
Cho, J.Y., Yoo, K.S., Kim, J., Choi, B.J., & Oh, W. (2020). Growth and bioactive compounds of lettuce as affected by light intensity and photoperiod in a plant factory using external electrode fluorescent lamps. Hortic. Sci. Technol., 38(5), 645-659. https://doi.org/10.7235/HORT.20200059
Dutta Gupta, S., & Agarwal, A. (2017). Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment. In: Dutta Gupta, S. (Eds). Light Emitting Diodes for Agriculture., pp 1-25. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_1
Etae, N., Wamae, Y., Khummueng, W., Utaipan, T. & Ruangrak, E. (2020). Effects of artificial light sources on growth and phytochemicals content in green oak lettuce. Hort. bras., 38(2), 204-210. https://doi.org/10.1590/S0102-053620200213
Gao, Q., Liao, Q., Li, Q., Yang, Q., Wang, F. & Li, J. (2022). Effects of LED red and blue light component on growth and photosynthetic characteristics of coriander in plant factory. Hortic., 8(12), 1165. https://doi.org/10.3390/horticulturae8121165.
Huang, L., Bell, R.W., Dell, B. & Woodward, J. (2004). Rapid nitric acid digestion of plant material with an open-vessel microwave system. Commun. Soil Sci. Plant Anal., 35(3-4), 427-440. DOI: 10.1081/CSS-120029723
Kalra. Y. (1997). Handbook of reference methods for plant analysis. pp. 57-157. CRC press, New York. https://www.routledge.com/Handbook-of-Reference-Methods-for-Plant-Analysis/Kalra/p/book/9780367448004
Kang, W.H., Park, J.S., Park, K.S. & Eek, J. S. (2016). Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). HEB., 57, 573-579. https://doi.org/10.1007/s13580-016-0093-x
Li, R., He, Y., Chen, J., Zheng, S. & Zhuang, C. (2023). Research progress in improving photosynthetic efficiency. Int. J. Mol. Sci., 24, 9286. https://doi.org/10.3390/ijms24119286
Mengutay, M., Ceylan, Y., Kutman, U.B. & Cakmak, I. (2013). Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil., 368, 57-72. https://doi.org/10.1007/s11104-013-1761-6
Modarelli, G.C., Paradiso, R., Arena, C., De Pascale, S. & Van Labeke, M.-C. (2022). High light intensity from blue-red LEDs enhances photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Hortic., 8(2), 114. https://doi.org/10.3390/horticulturae8020114
Mohamed, S. J., Rihan, H. Z., Aljafer, N., & Fuller, M. P. (2021). The impact of light spectrum and intensity on the growth, physiology, and antioxidant activity of lettuce (Lactuca sativa L.). Plants (Basel, Switzerland)., 10(10), 2162. https://doi.org/10.3390/plants10102162
Mostofa, M.G., Rahman, Md.M., Ghosh, T.K., Kabir, A.H., Abdelrahman, M., Khan, Md.A.R., Mochida, K. & Tran, L-S.P. (2022). Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol. Biochem., 186, 279-289. https://doi.org/10.1016/j.plaphy.2022.07.011.
Naznin, M.T., Lefsrud, M., Gravel, V. & Azad, M.O.K. (2019). Blue light added with red leds enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants., 8(93), 1-12. https://doi.org/10.3390/plants8040093
Orsini, F., Pennisi, G., Zulfiqar, F. & Gianquinto, G. (2020). Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci., 85(5), 297-309. https://doi.org/10.17660/eJHS.2020/85.5.1
Pinho, P., Jokinen, K. & Halonen, L. (2017). The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Light. Res. Technol., 49, 866-881. https://doi.org/10.1177/1477153516642269
Rehman, M., Baloch, S. U., Bao, Y., Wang, B., Peng, D. & Lijun, L. (2017). Light-emitting diodes: whether an efficient source of light for indoor plants? Environ. Sci. Pollut. Res., 24, 24743-24752. https://doi.org/10.1007/s11356-017-0333-3
Ruangrak, E. & Khummueng, W. (2019). Effects of artificial light sources on accumulation of phytochemical contents in hydroponic lettuce. J. Hortic. Sci. Biotechnol., 94, 378-388. https://doi.org/10.1080/14620316.2018.1504630
Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M. & Hasanuzzaman, M. (2021). Abiotic stress and Reactive Oxygen Species: generation, signaling, and defense mechanisms. Antioxidants, 10, 277. https://doi.org/10.3390/antiox10020277
Shabala, S. & Hariadi, Y. (2005). Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta., 221, 56-65. https://doi.org/10.1007/s00425-004-1425-0
Sirinupong, M. (2017). Practical for soilless culture in Thailand. 4th Eds. Fram-up Design., pp. 45-62. Nonthaburi, Bangkok. https://koha.library.tu.ac.th/bib/709208
Tabbert, J.M., Schulz, H. & Krähmer, A. (2021). Increased plant quality, greenhouse productivity and energy efficiency with broad-spectrum led systems: A case study for Thyme (Thymus vulgaris L.). Plants., 10, 960. https://doi.org/10.3390/plants10050960
Tarakanov, G.I., Tovstyko, A.D., Lomakin, P.M., Shmakov, S.A., Sleptsov, N.N., Shmarev, N.A. & Ivlev, A.A. (2022). Effects of light spectral quality on photosynthetic activity biomass production, and carbon isotope fractionation in lettuce, Lactuca sativa L., plants. Plants., 11(3), 441. https://doi.org/10.3390/plants11030441
Tham, C.A.T., Zwe, Y.H. & Li, D. (2021). Microbial study of lettuce and agriculture water used for lettuce production at Singapore urban farms. Food Control., 126, 108065. https://doi.org/10.1016/j.foodcont.2021.108065.
Thor, K. (2019). Calcium—nutrient and messenger. Front. Plant Sci., 10, 2-7. https://doi.org/10.3389/fpls.2019.00440
Tränkner, M., Tavakol, E. & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant., 163, 414-431. https://doi.org/10.1111/ppl.12747
Urrestarazu, M., Nájera, C. & del Mar Gea, M. (2016). Effect of the spectral quality and intensity of light-emitting diodes on several horticultural crops. HortScience., 51(3), 268-271. https://doi.org/10.21273/HORTSCI.5 1.3.268
Wang, W., Liu, D., Qin, M., Xie, Z., Chen, R. & Zhang, Y. (2021). Effects of supplemental lighting on potassium transport and fruit coloring of tomatoes grown in hydroponics. Int. J. Mol. Sci., 22(5), 2687. https://doi.org/10.3390/ijms22052687
White, P. J. & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Ann. Bot., 105(7), 1073-1080. https://doi.org/10.1093/aob/mcq085.
Zhang, X., He, D. X., Niu, G. H., Yan, Z. N. & Song, J. X. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng., 11(2), 33-40. DOI: 10.25165/j.ijabe.20181102.3420