Article Main

Yazi Abdullah Jassim Eman Hamid Sadiq Aniz

Abstract

Pseudomonas aeruginosa can cause diseases and multidrug resistance. It can produce many pigments, such as pyoverdine, which has anticancer properties. Cancer is still a major issue in medical science. Therefore, this study aimed to use highly
efficient alternative treatments, such as pyoverdine. One hundred fifty samples of burns and wounds were collected from
patients hospitalized in BabylIt hospitals. All the isolates were cultivated on various media to identify all specimens, including blood agar, MacConkey agar, and cetrimid agar. The isolates were tested for antibiotic susceptibility. P. aeruginosa was cultured in Luria-Bertani (LB) medium to stimulate its production of PDV. Congo red method and microtiter plate were used to determine biofilm production. The findings showed 50 isolates of P. aeruginosa were dispersed among patients, 35/50 (70%) burns
and 15/50 (30%) wound infections and only four of the 50 isolates produced PVD.  P. aeruginosa was examined against 17 common antibiotics(Aztreonam, Ceftazidime, Cefepime, Cefriaxone, Piperacillin_ tazobactam, Piperacillin, Gentamicin, Tobramycin, Netilmicin, Amikacin, Ciprofloxacin, Norfloxacin, Gatifloxacin, Levofloxacin, Imipenem, Doripenem, Meropenem)and the majority of isolates exhibited MDR. By using the Congo red method out of 50, 4(8%)  isolates gave a positive ability to form biofilm as a qualitative method. Among 4 isolates, ps1 and ps4 were more productive, so it was tested to complete the
study. PVD had anticancer activity against two types of cell lines: Lung cancer cells (A549) with inhibition range from 31.800in 400 µg/ml to 7.200 %in 25 µg/ml and skin cancer cells (A375) with cell vitality range from 55.600in 400 µg/ml to 8.533% in 25 µg/ml.


 

Article Details

Article Details

Keywords

Biofilm, Cancer cell lines, Congo red , Pseudomonase aeruginosa , Pyoverdine (PVD), Succinic acid medium

References
Abbas, H.A., El-Ganiny, A.M. & Kamel, H.A. (2018). Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr. Health Sci., 18 (1), 11. https://doi.org/10.4314/ahs.v18i1.3.
Aloush V., Navon-Venezia S., Seigman-Igra Y., Cabili S. & Carmeli Y. 2016; Multidrug-Resistant Pseudomonas aeruginosa: Risk Factors and Clinical Impact. Antimicrob. Agents Chemother.  50, 43–48. doi: 10.1128/AAC.50.1.43-48.2006. 
AL-Rubaye, D., Albassam, W. & Al-habobi, H. (2015). Frequency of blaOxa10 Beta-lactamase gene in Pseudomonas aeruginosa isolated from different clinical swabs. Iraqi Journal of Science, 56(4),3405-3412.
Brandel J., Humbert N., Elhabiri M., Schalk I.J., Mislin G.L.A., Albrecht-Gary A.-M. 2022. Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes. Dalton Trans. ;41:2820–2834. doi: 10.1039/c1dt11804h. [
Braud A., Hannauer M., Mislin G.L.A. & Schalk I.J. (2019). The Pseudomonas aeruginosa Pyochelin-Iron Uptake Pathway and Its Metal Specificity. J. Bacteriol. 2009;191:3517–3525. doi: 10.1128/JB.00010-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Brown, A. E. & Smith, H. R. (2017). Benson’s Microbiological Applications Laboratory Manual in General Microbiology 14th Ed. McGraw-Hill. U S A
Cappuccino, J. G. & Welsh, C. (2018). Microbiology A laboratory manual. 11th ed. Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE. England
Chandra, S., Choure, K., Dubey, R.C. & Maheshwari, D.K. (2017). Rhizosphere competent Mesorhizobiumloti mp6 induces root hair curling, inhibits sclerotinia sclerotiorum and enhances growth of indian mustard (brassica campestris). Braz. J. Microbiol., 38 (1), 124–130. https://doi.org/10.1590/S1517- 83822007000100026.
 Cunrath O., Gasser V., Hoegy F., Reimmann C., Guillon L. & Schalk, I.J. (2014). A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environ. Microbiol.,17,171–185. doi: 10.1111/1462-2920.12544. [PubMed] [CrossRef] [Google Scholar]
El-Fouly, M. Z;Sharaf, A. M ;Shahin, A .A. M; El-Bialy, H.A. & Omara ,AMA (2015). Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. Journal of Radiation Research and Applied Sciences,8(1), 36-48.
Esraa H. Hamza a,⇑ , Ashraf M. El-Shawadfy a , Ayman A. Allam b & Wesam A. Hassanein (2023). Study on pyoverdine and biofilm production with detection of LasR gene in M.D.R Pseudomonas aeruginosa. Saudi Journal of Biological Sciences. (3) pp.1-8.
Forbes, B., Daniel, F. & Alice, S. W. B. Scott’s. (2017). Diagnostic Microbiology. 12th ed., Mosby Elsevier Company. U.S.A, 62-465.
Jassim, Y. A. et al. (2023). Study of antibacterial activity and cytotoxicity of the bioactive compound of Bacillus megaterium L2 strains isolated from the oral cavity of hospital workers and visitors at Dental Health Centre, Babylon, Iraq. Journal of Applied and Natural Science, 15(1), 371 – 378
Jawetz, E., Melnik, J.L., Adelberg, E.A., Brook, G.F., Butel, J.S. & Morse, S.A. (2019). Medical Microbiology 16th ed. Appleton and Lang New York. Connecticut. PP.254-260
Kamali, E., Jamali, A., Ardebili, A., et al., (2020). Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes 13. https://doi.org/ 10.1186/s13104-020-4890-z
Kang, D. & Kirienko, N.V. (2017). High-throughput genetic screen reveals that early attachment and biofilm formation are necessary for full pyoverdine production by Pseudomonas aeruginosa. Front. Microbiol. https://doi.org/10.3389/ fmicb.2017.01707.
Kang, D. & Kirienko, N.V. (2018. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J. Microbiol. 56 (7), 449–457. https://doi.org/10.1007/s12275-018-8114-3.
Kang, D., Revtovich, A.V., Chen, Q., Shah, K.N., Cannon, C.L. & Kirienko, N.V. (2020). Pyoverdine-dependent virulence of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Front. Microbiol. https://doi.org/10.3389/ fmicb.2019.02048
Lima, J.L.d.C., Alves, L.R., Jacomé, P.R.L.d.A., Bezerra Neto, J.P., Maciel, M.A.V. & Morais, M.M.C.d. (2021). Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in lasR protein of isolates non biofilmproducing. Braz. J. Infect. Dis., 22 (2), 129–136. https://doi.org/10.1016/j. bjid..03.003.
Madloom BM, Umran HH. 2020 .Evaluation of risk factor in Iraqi patients with angiographically documented peripheral vascular disease and the effect of specific risk factor on specific site or vessel. Med J Babylon;17:347-52.
Mahmoud, M.F., Fathy, F.M., Gohar, M.K. & Soliman, M.H. (2021). Biofilm formation and quorum sensing lasrgene of Pseudomonas aeruginosa isolated from patients with post-operative wound infections. Eur. J. Mol. Clin. Med. https:// ejmcmcom/article_8085.html
Minandri F., Imperi F., Frangipani E., Bonchi C., Visaggio D., Facchini M., Pasquali P., Bragonzi A. & Visca P. (2016). Role of iron uptake systems in Pseudomonas aeruginosa virulence and airway infection. Infect. Immun. ;84:2324–2335. doi: 10.1128/IAI.00098-
Moradali M.F., Ghods S. & Rehm B.H. (2017). Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell Infect. Microbiol.;7:39. doi: 10.3389/fcimb.2017. \.00039. [P.M.C free article] [PubMed] [CrossRef] [Google Scholar] [Ref list]
Omidvari, M., Sharifi, R.A., Ahmadzadeh, M. & Dahaji, P.A. (2021). Role of fluorescent Pseudomonads siderophore to increase bean growth factors. J. Agric. Sci. https://doi.org/10.5539/jas.v2n3p242
Patel H.M., Tao J. & Walsh C.T. (2003). Epimerization of an l-Cysteinyl to a d-Cysteinyl Residue during Thiazoline Ring Formation in Siderophore Chain Elongation by Pyochelin Synthetase from Pseudomonas aeruginosa. Biochemistry, 42, 10514–10527. doi: 10.1021/bi034840c. [PubMed] [CrossRef] [Google Scholar]
Reimann C. 2022. Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aeruginosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. Microbiology,158,1317–1324. doi: 10.1099/mic.0.057430-0. [PubMed] [CrossRef] [Google Scholar]
Roche B., Garcia-Rivera M.A., Normant V., Kuhn L., Hammann P., Brönstrup M., Mislin G.L.A. & Schalk I.J. (2021). A role for PchHI as the A.B.C transporter in iron acquisition by the siderophore pyochelin in Pseudomonas aeruginosa. Environ. Microbiol. ;24:866–877. doi: 10.1111/1462-2920.15811. [PubMed] [CrossRef] [Google Scholar]
Romling U. & Balsalobre C. (2022). Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med.;272:541–561. doi: 10.1111/joim.12004. [PubMed] [CrossRef] [Google Scholar]
Sasirekha, B. & Srividya, S. (2016). Siderophore production by Pseudomonas aeruginosa fp6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric. Nat. Resour. 50 (4), 250–256.
Sayyed, R., Badgujar, M., Sonawane, H., Mhaske, M. & Chincholkar, S. ( 2022). Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads.
Sebat, J..L, Paszczynski A.J., Cortese, M.S. & Crawford. R.L. (2022). Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol. Sep;67(9):3934-42. doi: 10.1128/AEM.67.9.3934-3942.2001.
Sen C.K., Gordillo G.M., Roy S., Kirsner R., Lambert L., Hunt T.K., Gottrup F., Gurtner G.C. & Longaker M.T. (2019). Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen.;17:763–771. doi: 10.1111/j.1524-475X.20 09.00543.x.
Vetrivel, A., Ramasamy, M., Vetrivel, P., Natchimuthu, S., Arunachalam, S., Kim, G.-S., Murugesan, R., 2021. Pseudomonas aeruginosa biofilm formation and its control. Biologics 1 (3), 312–336. https://doi.org/10.3390/biologics1030019.
Visaggio, D., Pasqua, M., Bonchi, C., Kaever, V., Visca, P. & Imperi, F., (2015). Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa. Front. Microbiol. https://doi.org/10.3389/ fmicb.2015.00902
Youzhou Liu, , Chen Dai , Yaqiu Zhou , Junqing Qiao , Bao Tang , Wenjie Yu , Rongshen Zhang & Yongfeng (2021). Pyoverdines Are Essential for the Antibacterial Activity of Pseudomonas chlororaphis YL-1 under Low-Iron Conditions
Section
Research Articles

How to Cite

Anticancer activity of pyoverdine (PVD) producing  by antibiotic-resistant Pseudomonas aeruginosa isolated  from burn and wound infections. (2024). Journal of Applied and Natural Science, 16(2), 777-785. https://doi.org/10.31018/jans.v16i2.5506