##plugins.themes.bootstrap3.article.main##

Shaik Faheem Akhtar M. Altaf Wani Tadar Jamja Madhu Saatu Ruthy Tabing Akshay Uike E. G. Rao A. S. Chandan Pooja Kumari Saika Nabi Mohd. Tahir Asif M. Iqbal Qureshi

Abstract

The combining ability provides insightful information about the genetic mechanisms that govern the inheritance of traits and enables the identification of potential inbred lines ; and promising hybrid combinations for crop improvement. However, most studies on quality protein maize (QPM) have focused on nutritional aspects, and very few are focused on their combining ability. In addition, studies on the adaptation, hybrid performance and stability of QPM in temperate areas remain scarce.Therefore, the present study sought to examine the combining ability of eight QPM inbred lines (QPM13, QPM14, QPM20, QPM21, QPM49, QPM50, VQL1, and VQL17). These 8 lines were subjected to half-diallel mating. Consequently, 28 crosses obtained were further evaluated in the temperate region of Kashmir against one check and parents in the RCBD, with three replications in a single row.The results revealed significant variances for general combining ability (GCA) and specific combining ability (SCA) for most of the recorded agronomic, yield, and quality traits. The crosses QPM49 × VQL1, QPM 13 × QPM14, QPM21 × VQL17, QPM13 × QPM50 and QPM50 × VQL17 were found to perform best in terms of earliness in tasselling (-1.842), silking (-1.204), days to mature (-2.654), highest yield (12.875 g)and protein content (1.113%), respectively. These promising crosses can be viable material sources for future QPM variety development programs in temperate regions.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Combining ability, Genral combining ability (GCA), Hybrids, Maize, Specific combining ability (SCA), Zea mays

References
Abrha, S. W., Zeleke, H. Z. & Gissa, D. W. (2013). Line x tester analysis of maize inbred lines for grain yield and yield related traits. Asian J. of Plant sci. & Res, 2013, 3(5), 12-19.
Amanah, A.J. & Hadi, B.H. (2021). Genetic analysis by using partial diallel crossing of maize in high plant densities (Estimation GCA, SCA and Some Genetic Parameters). Fourth International Conference for Agricultural and Sustainability Sciences. IOP Conf. Series: Earth and Environ. Sci, 2021, 910(1), 012135.
Amegbor, I., Van, B.A., Shargie, N., Tarekegne, A. & Labuschagne, M. (2022). Identifying quality protein maize inbred lines for improved nutritional value of maize in southern Africa. Foods, 2022, 11(898), 1-10. https://www.mdpi.com/2304-8158/11/7/898.
Amiruzzaman, M., Islam, M. A., Hassan, L. & Rohman, M. M. (2010). Combining ability and heterosis for yield and component characters in maize. Acad. J. of Plant Sci, 2010, 3(2), 79-84.
Anderson, S. R., Lauer, M. J., Schoper, J. B. & Shibles, R. M. (2004). Pollination timing effects on kernel set and silk receptivity in four maize hybrids. Crop Sci, 2004, 44(2), 464-473. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2004.4640.
Badu, A., Fakorede, M.A.B., Talabi, A.O., Oyekunle, M., Akaogu, I.C., Akinwale, R.O., Annor, B., Melaku, G., Fasanmade, Y. & Aderounmu, M. (2016). Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments, Crop Sci, 2016, 56(1), 183-199.
Bänziger, M., Setimela, P. S., Hodson, D. & Vivek, B. (2006). Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric. Water Manag, 2005, 80(1-3), 212-224.
Chigeza, G., Mashingaidze, K. & Shanahan, P. (2014). Advanced cycle pedigree breeding in sunflower combining ability for oil yield and its components. Euphytica, 2014, 195, 183-195.
de Abreu, V.M., Pinho, É.V.D.R.V., Mendes-Resende, M.P., Balestre, M., Lima, A.C., Santos, H.O. & Von Pinho, R.G. (2019). Combining ability and heterosis of maize genotypes under water stress during seed germination and seedling emergence. Crop Sci, 2019, 59(1), 33-43.
Fan, X.M., Zhang, Y.M., Yao, W.H., Chen, H.M., Tan, J., Xu, C.X., Han, X.L., Luo, L.M. & Kang, M. S. (2009). Classifying maize inbred lines into heterotic groups using a factorial mating design. Agrono. J, 2009, 101(1), 106-112. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj2008.0217.
FAO, Ifad, UNICEF, WFP, WHO,. (2021). The State of Food Security and Nutrition in the World 2021: Transforming food systems for food security, improved nutrition and afordable healthy diets for all. FAO, Rome. https://doi.org/10.4060/cb4474en. Accessed on 28th Jan, 2024.
FAOSTAT. (2021). FAO Stat. FAO, Rome. http://www.fao.org/faostat. Accessed on 28th Jan, 2024.
Fasahat, P., Abazar, R., Javad, M.R. & John, D. (2016). Principles and utilization of combining ability in plant breeding. Biomet. & Biostat. Inter. J, 2016, 4(1), 1-22.
Gelana, S. (2000). Heterosis and combining ability between adapted Ethiopian and CIMMYT‟s maize germplasm, M.Sc Thesis Presented to the School of Graduate Studies Haramaya University, Ethiopia.
Griffing, B. (1956). Concept of general and specific combining ability with diallel crossing systems. Aust. J. of Bio. Sci, 1956, 9, 463-493.
Grote, U., Fasse, A., Nguyen, T.T. & Erenstein, O. (2021). Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. in Sustain. Food Syst, 2021, 4, e617009. https://www.frontiersin.org/articles/10.3389/fsufs.2020.617009/full.
Huang, M., Chen, L-Y. & Chen, Z-Q. (2015). Diallel analysis of combining ability and heterosis for yield and yield components in rice by using positive loci. Euphytica, 2015, 205(1): 37-50. https://doi.org/10.1007/s10681- 015-1381-8.
Hussain, S.A., M. Amiruzzaman & Z. Hossain. (2003). Combining ability estimates in maize. Bangla. J. Agril. Res, 2003, 28: 435-440.
Ignjatovic-Micic, D., Kostadinovic, M., Bozinovic, S., Djordjevic-Melnik, O., Stankovic, G., Delic, N. & Vancetovic, J. (2020). Evaluation of temperate quality protein maize (QPM) hybrids for field performance and grain quality. Chil. J. of Agri. Res, 2020, 80(4), 598-607
Ignjatovic-Micic, D., Kostadinovic, M., Stankovic, G., Markovic, K., Vancetovic, J., Bozinovic, S., et al. (2013). Biochemical and agronomic performance of quality protein maize hybrids adapted to temperate regions. Maydica, 2013, 58(3), 311-317.
Kostadinovic, M., Ignjatovic-Micic, D., Vancetovic, J., Ristic, D., Bozinovic, S., Stankovic, G., et al. (2016). Development of high tryptophan maize near isogenic lines adapted to temperate regions through marker assisted selection - impediments and benefits. PLOS ONE, 2016, 11(12), e0167635. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167635.
Kumar, P., Hossain, F., Singh, N.K., Choudhary, P., Gupta, M., Singh, V., Chikappa, G., Kumar, R., Kumar, B., Jat, S. & Rakshit, S. (2019). Nutritional quality improvement in maize (Zea mays): Progress and challenges. Indi. J. of Agri. Sci, 2019, 89(6), 895-911.
Li, J. S & Vasal, S.K. (2016). Maize: Quality protein maize in Encyclopedia of food grains. Encyclop. of Food Grains, Second Edition, 2016, 20, 420-424. http://dx.doi.org/10.1016/b978-0-12-394437-5.00223-0.
Matin, M.Q.I., Rasul, M.G., Islam, A.K.M.A., Mian, M.K., Ivy, N.A. & Ahmed, J.U. (2016). Combining ability and heterosis in maize (Zea mays L.). Ameri. J. of BioSci, 2016, 4(6), 84-90.
Matongera, N., Ndhlela, T., Van Biljon, A., Kamutando, C.N., & Labuschagne, M. (2023). Combining ability and testcross performance of multi-nutrient maize under stress and non-stress environments. Front. in Plant Sci, 2023, 14, e1070302.
Mutimaamba, C., MacRobert, J., Cairns, J.E., Magorokosho, C., Ndhlela, T., Mukungurutse, C., Minnaar-Ontong, A. & Labuschagne, M. (2020). Line× tester analysis of maize grain yield under acid and non‐acid soil conditions. Crop Sci, 2020, 60(2), 991-1003.
Nigussie, M. & Zelleke, H. (2001). Heterosis and combining ability in a diallel among eight elite maize populations. Afr. Crop Sci. J, 2001, 9(3), 471-479. https://tspace.library.utoronto.ca/html/1807/19960/cs01066.html.
Patel, P.C. & Katherine, K.B. (2016). Heterosis and Combining ability for yield and quality traits in Quality Protein Maize (Zea mays L.). Electron. J. of Plant Breed, 2016, 7(4), 960-966.
Paul, S. K. & R. K. Duara. (1991). Combining ability studies in maize (Zea mays L.). Inter. J. of Tropic. Agric, 1991, 9(4): 250-254.
Poole, N., Donovan, J. & Erenstein, O. (2021). Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Poli, 100, e101976. https://doi.org/10.1016/j.foodpol.2020.101976.
Rocha, D.S., Rovaris, S.R.S., Rodrigues, C.S., Ticelli, M., Sawazaki, E. & Paterniani, M.E.A.G.Z. (2019). Identification of populations and hybrid combinations of maize for in natura consumption. Bragantia, 2019, 78, 535-541. https://doi.org/10.1590/1678-4499.20190064.
Sarika, K., Hossain, F., Muthusamy, V., Zunjare, R.U., Baveja, A., Goswami, R. & Gupta, H.S. (2018). Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci, 2018, 272(2018), 142-152.
Shah, R.T., Prasad, K. & Kumar, P. (2016). Maize- A potential source of human nutrition and health: A review. Cog. Food & Agri, 2016, 2(1), e1166995.
Singh, A., Shahi, J.P. & Langade, D.M. (2013). Combining ability studies for yield and its related traits in inbred lines of maize (Zea mays L.). Mole. Plant Breed, 2013, 4(22),177-188.
Singh, R.K & Chaudhary, B.D. (1985). Biometrical methods in quantitative genetic analysis, Kalyani Publishers, New Delhi, India, 1985, pp. 151-210.
Srivastava, A. & Singh, I.S. (2003). Heterosis and combining ability for yield and maturity involving exotic and indigenous inbred lines of maize (Zea mays L.). Indi. J. of Gene. & Plant Breed, 2003, 63(4), 345-346.
Tadessa, B. (2009). Heterosis and combining ability for yield, yield related parameters and stover quality traits for food-feed in maize (Zea mays L.) adapted to the mid-altitude agro-ecology of Ethiopia. An M.Sc. Thesis submitted to School of Graduate Studies, Haramaya University, Ethiopia.
Talukder, M.Z.A., Karim, A.N.M.S. Ahmed, S., Amiruzzaman, M. & Matin, M.Q.I. (2016). Line × tester analysis for yield and related traits in maize. Ann. Bangla. Agric, (2016), 20(1&2), 1-14.
Tulu, L., Wolde, L. & Gobezayew, T. (1999). Combining ability of some traits in seven- parent diallel crosses of selected maize (Zea mays L.) Populations. In: Maize production Technology for future: Challenges and opportunities, proceeding of the 6th eastern and southern Africa regional maize conference, Addis Ababa, Ethiopia, 21-25 Sept.1998. CIMMYT and EARO. pp. 78-80. https://www.cabidigitallibrary.org/doi/full/10.5555/19981611814.
Ünay, A., Basal, H. & Konak, C. (2016). Inheritance of grain yield in a half-diallel maize population. Turk. J. of Agri. & Forest, 2016, 28(4), 239-244.
Ünay, A., Konak, C. & Başal, H. (2004). Inheritance of grain yield in a halfdiallel maize population. Turk. J. Agric. For, 2004, 28(4): 239-244. https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=2169&context=agriculture.
Vacaro, E., Barbosa Neto, J.F., Pegoraro, D.G., Nuss, C.N. & Conceição, L.D.H. (2002). Combining ability of twelve maize populations. Pesqu. Agrope. Brasil, 2002, 37(1), 67-72.
Wegary, D. (2002). Combining ability analysis for traits of agronomic importance in Maize (Zea mays L.) inbred lines with different levels of resistance to grey leaf spot (Cercospora Zea maydis). M.Sc. Thesis submitted to School of Graduate studies, Alemaya University, Ethiopia.
Wegary, D., Vivek, B.S. & Labuschagne, M.T. (2013). Combining ability of certain agronomic traits in quality protein maize under stress and non-stress environments in Eastern and Southern Africa. Crop Sci, 2014, 54(3), 1004-1014.
Wolde, L., Keno, T., Tadess, B., Worku, M. & Wogari, D. (2017). Combing ability analysis of among early generation maize inbred lines. Ethio. J. of Agri. Sci, 2017, 27(2), 49-60.
Worku, M., Bänziger, M., Friesen, D., Erley, G.S., Horst, W.J. & Vivek, B.S. (2008). Relative importance of general combining ability and specific combining ability among tropical maize (Zea mays L.) inbreds under contrasting nitrogen environments. 2008, 53(2008), 279-288. https://repository.cimmyt.org/server/api/core/bitstreams/bd0c5b38-bc67-4df1-b97d-30b41eac88f3/content.
Worral, H.M., Scott, M.P. & Hallauer, A.R. (2015). Registration of temperate quality protein maize (QPM) lines BQPM9, BQPM10, BQPM11, BQPM12, BQPM13, BQPM14, BQPM15, BQPM16, and BQPM17. J. of Plant Regis, 2015, 9(3), 371-375.
Yerva, S.R., Sekhar, T.C, Allam, C.R. & Krishnan, V. (2016). Combining ability studies in maize (Zea mays L.) for yield and its attributing traits using Griffing’s diallel approach. Electron. J. of Plant Breed, 2016, 7(4), 1046-1055.
Yu, K., Wang, H., Liu, X., Xu, C., Li, Z., Xu, X. & Xu, Y. (2020). Large-scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources. Front. in Plant Sci, 2020, 11, e660.https://doi.org/10.3389/fpls.2020. 00660.
Zhang, X., Yong, H., Zhou, Z., Zhang, C., Lu, M., Sun, Q. & Li, X. (2017). Heterosis and combining ability of seven maize germplasm populations. Euphytica, 2017, 213(2), 1-11.
Section
Research Articles

How to Cite

Combining ability of quality protein maize (Zea mays L.) inbred lines for agronomic, yield and quality traits in temperate hilly regions of Kashmir, India. (2024). Journal of Applied and Natural Science, 16(3), 1383-1392. https://doi.org/10.31018/jans.v16i3.5479