##plugins.themes.bootstrap3.article.main##

Tamanna Parida Ram Sailesh Agnihotri Suresh Kumar Kolli Anindita Chakraborty Namuduri Srinivas

Abstract

The sewage sludge (SS) profile combines potentially toxic metals and organic matter that help nourish the soil in many ways. Still, toxicity raises concerns about the contamination of the food chain and pollution of the soil, water, and air. Treatment of raw SS by physical and chemical methods is a challenging task with a big budget and does not support the sustainable approach. On the other hand, phytoremediation coupled with electrokinetic treatment treats the raw sludge by extracting the maximum amount of heavy metals (HMS) and enhancing its quality by improving the physicochemical parameters. The core study of this paper is to determine the accumulation of heavy metals from EKT SS by Spinacia oleracea. Two setups were prepared by amending the SS with garden soil; one (untreated) was directly subjected to phytoremediation, whereas EKT influenced the other for 11 days and allowed the plant to grow (treated). Results have shown that the extraction of Pb and Zn was high in both sets without compromising the plant's metabolism. EKT encourages the organic carbon, pH, and conductivity of the SS and promotes the growth of the plant in comparison to the untreated setup. EKT made all elements highly available, helping plants to absorb some high elements efficiently, and some elements, such as As and Cr, reported the lowest extraction. Pb is known for its high toxicity, but Spinach could absorb more than the range by increasing its stress tolerance index.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Bioaccumulation factors, Electro-Kinetic treatment, Heavy metals, Hyperaccumulator, Sewage sludge

References
Abbas, G., Murtaza B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I., Amjad, M., & Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15:59.
Acharya, C., Samantara, A. K., Sasmal, A, Panda, C. & Thatoi H. (2021). Biochar: An Advanced Remedy for Environmental Management and Water Treatment. Bioresource Utilization and Management. 511-540
Ahmad, K., Nawaz, K., Khan, Z. I., Nadeem, M., Wajid, K., Ashfaq, A., Munir, B., Memoona, H., Sana, M., Shaheen, F., Kokab, R., Ur Rehman, S., Ullah, MF., Mehmood, N., Muqadas, H., Aslam, Z., Shezadi, M., Noorka, I. R., Basir, H., Shad, H. A; Batool, F., Iqbal, S., Munir, M., Sohail, M., Sher, M., Ullah, S., Ugulu, I. & Dogan, Y. (2018). Effect of diverse regimes of irrigation on metals accumulation in wheat crop: an assessment-dire need of the day. Fresen Environ Bull, 27(2), 846-855.
Al-Qahtani, K. M. (2012). Assessment of heavy metals accumulation in native plant species from soils contaminated in Riyadh City, Saudi Arabia. Life Sci. 9(2): 384-392
Arlo, L., Beretta, A., Szogi, A. A & del Pino, A. (2022). Biomass production, metal and nutrient content in sorghum plants grown on soils amended with sewage SS. Heliyon, 8(1)
Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L. & Coats, J. R. (2005). Phytoremediation-an overview. CRC Crit Rev Plant Sci, 24(2): 109-122
Bozkurt, M. A. & Yarılgaç T. (2010). The use of sewage SS as an organic matter source in apple trees. Pol J Environ Stud, 19(2)
Cameselle, C. & Reddy K. R. (2012). Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim. Acta, 86: 10-22
Chaudhary, K., Agarwal, S. & Khan S. (2018). Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance. Mycoremediation and Environmental Sustainability, 2: 39-60
Chen, X., Qadeer, A., Liu, M., Deng, L., Zhou, P., Mwizerwa, I. T., Liu, S. & Jiang, X. (2023). Bioaccumulation of emerging contaminants in aquatic biota: PFAS as a case study. In Emerging Aquatic Contaminants, (pp. 347-374). Elsevier.
Ciont, C., Epuran, A., Kerezsi, A. D., Coldea, T. E., Mudura, E., Pasqualone, A., Zha. H., Suharoschi., Vriesekoop, F & Pop, O. L. (2022). Beer safety: New challenges and future trends within craft and large-scale production. Foods, 11(17), 2693.
Cluis, C. (2004). Junk-greedy greens: phytoremediation as a new option for soil decontamination. BioTeach J, 2(6): l-67
Collivignarelli, M. C., Canato, M., Abba, A. & Miino, M. C., (2019). Biosolids: what are the different types of reuse?. J. Clean. Prod, 238, 117844.
Dos Santos, A. B., Cervantes, F. J., & Van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology, 98(12), 2369-2385.
Farraji, H., Aziz, H. A., Tajuddin, R. M. & Mojiri, A. (2014). Optimization of phytoremediation of lead-contaminated soil by spinach (Spinacia oleracea L). International Journal of Scientific Research in Knowledge, 2(10), 480-486.
Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment international, 30(7), 953-971.
Frąc, M., Oszust, K. & Lipiec J. (2012). Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage SS. Sensors, 12(3): 3253-3268
Fu, R., Wen, D., Xia, X., Zhang, W., & Gu, Y. (2017). Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chemical Engineering Journal, 316, 601-608.
Garbisu, C. & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. BioresourceTechnology, 77(3), 229-236.
Garcıa-Gil, J. C, Plaza, C., Soler-Rovira, P. & Polo A. (2000). Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem, 32(13): 1907-1913
Gardea-Torresdey, J. L., Peralta-Videa, J. R., Montes M., De la Rosa, G., Corral-Diaz, B. (2004). Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour. Technol., 92(3): 229-235
Gautam, M. & Agrawal, M. (2017). Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (DC) Stapf.) grown under different levels of red mud in sewage SS amended soil. Chemosphere, 175: 315-322
Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotechnol., 74: 21-31
Georgieva, S. S., McGrath, S. P., Hooper, D. J., Chambers, B. S. (2002). Nematode communities under stress: the long-term effects of heavy metals in soil treated with sewage sludge. Applied Soil Ecology, 20(1), 27-42.
Gomez, K.A., Gomez, A.A. (1984). Statistical procedures for agricultural research. Wiley
Guo, D., Ali, A., Ren, C., Du, J., Li, R., Lahori, A. H., Xiao R & Zhang Z. (2019). EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Ecotoxicol. Environ. Saf, 167: 396-403
Handique, G. K. & Handique, A. K. (2009). Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. J Environ Biol, 30(2): 299-302
Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C., Sparks, D. L., Yamaunc & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366-381.
Kikis, C., Thalassinos, G., & Antoniadis, V. (2024). Soil Phytomining: Recent Developments—A Review. Soil Systems, 8(1), 8.
Malik, G., Hooda, S., Majeed, S. & Pandey, V. C. (2022). Understanding assisted phytoremediation: potential tools to enhance plant performance. Assisted Phytoremediation,1-24
Manoj S. R., Karthik, C., Kadirvelu, K., Arulselvi, P. I., Shanmugasundaram, T., Bruno, B. & Rajkumar M. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. J. Environ. Manage, 254, 109779
Mao, X., Han, F. X., Shao, X., Guo, K., McComb, J., Arslan, Z. & Zhang, Z. (2016). Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicology and Environmental Safety, 125, 16-24.
McGrath, S. P. & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. COBIOT, 14(3): 277-282
Morera, M. T., Echeverria, J. & Garrido, J. (2002). Bioavailability of heavy metals in soils amended with sewage SS. Can. J. Soil Sci, 82(4), 433-438
Ojeda, G., Alcaniz, J. M. & Ortiz O. 2003. Runoff and losses by erosion in ~ soils amended with sewage sludge. Land Degrad Dev, 14(6):563–573. doi:10.1002/ldr.580
Osu, C. I., & Onyema, M. O. (2016). Vanadium inhibition capacity on nutrients and heavy metal uptake by Cucumis sativus. Journal of American Science, 12(3), 139-47.
Pivetz, B. E. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response.
Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023). Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy, 13(6), 1521.
Rathika, R., Srinivasan, P., Alkahtani, J., Al-Humaid, L. A., Alwahibi, M. S., Mythili, R. & Selvankumar, T. (2021). Influence of biochar and EDTA on enhanced phytoremediation of lead contaminated soil by Brassica juncea. Chemosphere, 271, 129513.
Rizwan, M., Ali, S., ur Rehman, M. Z., Rinklebe, J., Tsang, D. C., Bashir, A., Maqbool, A., Tack, F.M.G & Ok Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: a review. Sci. Total Environ, 631, 1175-1191
Rosiek, K. (2020). Directions and challenges in the management of municipal sewage sludge in Poland in the context of the circular economy. Sustainability, 12(9), 3686.
Saha, S., Saha, B. N., Pati, S., Pal, B., Hazra, G. C. (2017). Agricultural use of sewage SS in India: benefits and potential risk of heavy metals contamination and possible remediation options–a review. IJETM, 20(3-4): 183-199
Sarma H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Techno.l, 4(2): 118-138
Scutarașu, E. C., & Trincă, L. C. (2023). Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods, 12(18), 3340.
Shah, V. & Daverey, A. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov, 18, 100774.
Singh, G., Pankaj, U., Ajayakumar P. V. & Verma R. K. (2020). Phytoremediation of sewage SS by Cymbopogon martinii (Roxb.) Wats. var. motia Burk. grown under soil amended with varying levels of sewage Sludge. Int. J. PhytoremediationI , 22(5): 540-550
Smith, K.M., Fowler, G.D., Pullket, S., Graham, N.D. (2009). Sewage SS-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res., 43(10): 2569-2594
Srinivas, N., Kumar, K. S., Sailesh, A. R. & Sudarshan, M. (2023). Assessment of remediative potential of metals from electroremediated sewage SS. IJEST, 1-10
Srivastava, V., Sarkar, A., Singh, S., Singh, P., De Araujo, A. S. & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, 64.
Standard operating procedure for soil pH determination (2021). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/cb3637en/cb3637en.pdf
TESCAN MIRA. (2023). https://www.tescan.com/product/FE-SEM/EDX-for-materials-science-tescan-mira/
Ugulu, I., Khan, Z. I., Rehman, S., Ahmad, K., Munir, M. & Bashir, H. (2020). Effect of wastewater irrigation on trace metal accumulation in spinach (Spinacia oleracea L.) and human health risk. Pakistan Journal of Analytical & Environmental Chemistry, 21(1), 92-101.
Ulla, R., Hadi, F., Ahmad, S., Jan, A. U. & Rongliang, Q. (2019). Phytoremediation of lead and chromium contaminated soil improves with the endogenous phenolics and proline production in Parthenium, Cannabis, Euphorbia, and Rumex species. Water, Air & Soil Pollution, 230: 1-13
Urbaniak, M., Wyrwicka, A., Tołoczko, W., Serwecińska, L. & Zieliński, M. (2017). The effect of sewage SS application on soil properties and willow (Salix sp.) cultivation. Sci. Total Environ, 586: 66-75
Vischetti, C., Marini, E., Casucci, C., & De Bernardi, A. (2022). Nickel in the environment: Bioremediation techniques for soils with low or moderate contamination in European Union. Environments, 9(10), 133.
Walkley, A., & Black I. A. (19340. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci, 37(1): 29-38
Wang, X., Lü, S., Gao, C., Xu, X., Zhang, X., Bai, X. & Wu, L. (2014). Highly efficient adsorption of ammonium onto palygorskite nanocomposite and evaluation of its recovery as a multifunctional slow-release fertilizer. Chemical Engineering Journal, 252: 404-414
Wang, Y., Han, Z., Li, A., Cui, C. (2021). Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexingagents. Environ. Pollut, 283, 117111.
Wong, J. S., Hicks, R. E. & Probstein, R. F. (1997). EDTA-enhanced electroremediation of metal-contaminated soils. Journal of Hazardous Materials, 55(1-3), 61-79.
Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. (2012). Heavy metals toxicity and the environment Paul B Tchounwou. Published in final edited form as: EXS, 101, 133-164.
Zhong, D. X., Zhong, Z. P., Wu, L. H., Xue, H., Song, Z. W. & Luo, Y. M. (2015). Thermal characteristics and fate of heavy metals during thermal treatment of Sedum plumbizincicola, a zinc and cadmium hyperaccumulator. Fuel Processing Technology, 131, 125-132.
Zhu, N. M., Chen, M., Guo, X. J., & Hu, G. Q. (2015). Electrokinetic removal of Cu and Zn in anaerobic digestate: Interrelation between metal speciation and electrokinetic treatments. Journal of Hazardous Materials, 286, 118-126.
Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M. & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557.
Section
Research Articles

How to Cite

A study on the evaluation of heavy metals accumulation in electrokinetically treated sewage sludge by Spinacia oleracea. (2024). Journal of Applied and Natural Science, 16(2), 574-583. https://doi.org/10.31018/jans.v16i2.5464