##plugins.themes.bootstrap3.article.main##

Armelia Rezkita Setyoningsih Samanhudi Amalia Tetrani Sakya Muji Rahayu Andiyana Setyawati

Abstract

Iron (Fe) and zinc (Zn) agronomically biofortification is required on mustard greens, as their nutritional value is still insufficient to meet human needs. This biofortification is anticipated to meet the dietary requirements of Zn and Fe to prevent the stunting phenomenon. This investigation aimed to examine the consequences of foliar Fe and Zn with varying concentrations (T1 to T16) on the physiology and biochemistry of biofortified mustard. The research was carried out in a greenhouse located in Karang-anyar, Central Java, Indonesia using a randomized block design (RBD) with two factors, namely Fe-EDTA and Zn-EDTA, each concentration of  0; 0.2; 0.4; 0.6 gl-1 with three replications. Fe and  Zn   were applied on the 21st day after sowing with foliar spray. The results showed that Fe biofortification up to a concentration of 0.6 g L-1 with or without a combination of Zn can increase physiological and biochemical parameters in mustard greens, namely photosynthetic rate up to 6.747 µmol m-2 s-1(T15) transpiration rate 0.653 µmol m-2 s-1 (T5) stomatal conductance 18.854 µmol m-2 s-1(T5) number of stomata by 283.7 (T13), stomatal opening width by 7.777 µm (T16), iron content by 56.109 mg kg-1 (T14), but Zn content can only increase when Zn is added alone without Fe, an increase in Zn up to 18.127 mg kg-1 (T4).This study showed that Fe and Zn biofortification up to a concentration of 0.6 g L-1 was able to improve the biochemicals of mustard greens, especially their Fe and Zn contents and also the physiology of mustard greens.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biofortification, Foliar, Iron, Mustard greens, Zinc

References
Ali, I., Khan, A., Ali, A., Ullah, Z., Dai, D.-Q., Khan, N., Khan, A., Al-Tawaha, A. R. & Sher, H. (2022). Iron and zinc micronutrients and soil inoculation of Trichoderma harzianum enhance wheat grain quality and yield. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.960948
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104%2Fpp.24.1.1
Aryandhita, M. I. & Kastono, D. (2021). Pengaruh pupuk kalsium dan kalium terhadap pertumbuhan dan kualitas hasil sawi hijau (Brassica rapa L.). Vegetalika, 10(2), 107. https://doi.org/10.22146/veg.55473
Aung, K., Jiang, Y., & He, S. Y. (2018). The role of water in plant–microbe interactions. The Plant Journal, 93(4), 771–780. https://doi.org/10.1111/tpj.13795
Awwalin, J., Munir, Z. & Jadid, U. N. (2023). Literatur review: pengaruh ASI ekslusif terhadap kejadian stunting pada balita. 11. https://doi.org/10.35816/jiskh.v10i1.490
Ayyar, S., Appavoo, S. & N, M. (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: an overview. Communications in Soil Science and Plant Analysis, 51, 2001–2021. https://doi.org/10.1080/00103624.2020.1820030
Bhatla, S. C. & Lal, M. A. (2023). Plant physiology, development and metabolism. Springer Nature.
Buturi, C. V., Mauro, R. P., Fogliano, V., Leonardi, C. & Giuffrida, F. (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods, 10(2), 223. https://doi.org/10.3390/foods10020223
Buturi, C. V., Mauro, R. P., Fogliano, V., Leonardi, C. & Giuffrida, F. (2023). Iron and zinc biofortification and bioaccessibility in carrot ‘Dordogne’: comparison between foliar applications of chelate and sulphate forms. Scientia Horticulturae, 312, 111851. https://doi.org/10.1016/j.scienta.2023.111851
Chasapis, C. T., Ntoupa, P.S. A., Spiliopoulou, C. A. & Stefanidou, M. E. (2020). Recent aspects of the effects of zinc on human health. Archives of Toxicology, 94(5), 1443–1460. https://doi.org/10.1007/s00204-020-02702-9
Clemens, S. (2014). Zn and Fe biofortification: The right chemical environment for human bioavailability. Plant Science, 225, 52–57. https://doi.org/10.1016/j.plantsci.2014.05.014
Consentino, B. B., Ciriello, M., Sabatino, L., Vultaggio, L., Baldassano, S., Vasto, S., Rouphael, Y., La Bella, S. & De Pascale, S. (2023). current acquaintance on agronomic biofortification to modulate the yield and functional value of vegetable crops: a review. Horticulturae, 9(2). https://doi.org/10.3390/horticulturae9020219
Creek, D., Lamarque, L. J., Torres-Ruiz, J. M., Parise, C., Burlett, R., Tissue, D. T., & Delzon, S. (2020). Xylem embolism in leaves does not occur with open stomata: Evidence from direct observations using the optical visualization technique. Journal of Experimental Botany, 71(3), 1151–1159. https://doi.org/10.1093/jxb/erz474
Dama, H., Aisyah, S. I. & Dewi, A. K. (2020). Respon kerapatan stomata dan kandungan klorofil padi (Oryza sativa L.) mutan terhadap toleransi kekeringan. Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 16.
de Moraes, C. C., Silveira, N. M., Mattar, G. S., Sala, F. C., Mellis, E. V. & Purquerio, L. F. V. (2022). agronomic biofortification of lettuce with zinc under tropical conditions: zinc content, biomass production and oxidative stress. Scientia Horticulturae, 303, 111218. https://doi.org/10.1016/j.scienta.2022.111218
Dhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Sandhu, P. S., Behera, S. K., Singh, P., Kaur, J., Singh, H., Abdel-Hafez, S. H., Gaber, A., Sayed, S. & Hossain, A. (2021). Interactive effects of foliar application of zinc, iron and nitrogen on productivity and nutritional quality of indian mustard (Brassica juncea L.). Agronomy, 11(11). https://doi.org/10.3390/agronomy11112333
Di Gioia, F., Petropoulos, S. A., Ozores-Hampton, M., Morgan, K. & Rosskopf, E. N. (2019). Zinc and iron agronomic biofortification of brassicaceae microgreens. Agronomy, 9(11). https://doi.org/10.3390/agro nomy9110677
Díaz-Pérez, J. C. (2019). Chapter 8—Transpiration. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 157–173). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813278-4.00008-7
Dinda, W. P., Triharyanto, E., & Samanhudi. (2020). Effects of mulch on growth and yield of garlic bulbils at various fertilizing doses. IOP Conference Series: Earth and Environmental Science, 423(1), 012033. https://doi.org/10.1088/1755-1315/423/1/012033
El-Desouky, H. S., Islam, K. R., Bergefurd, B., Gao, G., Harker, T., Abd-El-Dayem, H., Ismail, F., Mady, M. & Zewail, R. M. Y. (2021). Nano iron fertilization significantly increases tomato yield by increasing plants’ vegetable growth and photosynthetic efficiency. Journal of Plant Nutrition, 1–15. https://doi.org/ 10.1080/ 01904167. 2021.1871749
Elsi, Y., Satriadi, T. & Istikowati, W. T. (2018). Etnobotani hasil hutan bukan kayu sebagai bahan pangan dan perkakas di Desa Ulang Kabupaten Hulu Sungai Selatan.
Eviati & Sulaeman. (2009). Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, Dan Pupuk. Balai Penelitian Tanah. Bogor
Félix, J. W., Sánchez-Chávez, E., De la Cruz Lázaro, E. & Márquez-Quiroz, C. (2021). Edaphic and Foliar Biofortification of Common Black Bean (Phaseolus vulgaris L.) with Iron. Legume Research, 42, 192–196. https://doi.org/10.18805/LR-553
Feng, Y., Kreslavski, V. D., Shmarev, A. N., Ivanov, A. A., Zharmukhamedov, S. K., Kosobryukhov, A., Yu, M., Allakhverdiev, S. I. & Shabala, S. (2022). Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) Plants. Plants, 11(14). https://doi.org/10.3390/plants11141894
Forrest, H. (1962). Instructive Micro-Replicas from Nail Polish. The American Biology Teacher, 24(7), 523–525. https://doi.org/10.2307/4440080
Ghaffar, A., Ehsanullah, Akbar, N. & Khan, S. (2011). Influence of zinc and iron on yield and quality of sugarcane planted under various trench spacings. Pakistan Journal of Agricultural Sciences, 48, 25–33.
Giordano, M., El-Nakhel, C., Pannico, A., Kyriacou, M. C., Stazi, S. R., De Pascale, S. & Rouphael, Y. (2019). Iron biofortification of red and green pigmented lettuce in closed soilless cultivation impacts crop performance and modulates mineral and bioactive composition. Agronomy, 9(6). https://doi.org/10.3390/agronomy9060290
Hafiz, M., Raza, Bashir, M. A., Rehim, A., Jan, M., Raza, Q.-U.-A. & Berlyn, G. (2021). Potassium and zinc co-fertilization provide new insights to improve maize (Zea mays L.) physiology and productivity. Pakistan Journal of Botany, 53. https://doi.org/10.30848/PJB2021-6(28)
Herawati, M. M., Pudjihartati, E., Setiawan, A. W., Purwanto, A., Sulistyaningsih, E. & Pramono, S. (2022). Pengaruh Penaungan Terhadap Karakteristik Fisiologi dan Kandungan Artemisinin Artemisia Cina Berg Ex Poljakov Poliploid. https://repository.uksw.edu//handle/123456789/28052
Hussein, M. M. & Alva, A. K. (2014). Growth, yield and water use effeciency of forage sorghum as affected by npk fertilizer and deficit irrigation. American Journal of Plant Sciences, 5(13). https://doi.org/10.4236/ajps.2014.513225
Iqbal, R., Aown, M., Raza, S., Saleem, M., Imran Haider, K., Zaheer, M. S., Ahmad, S., Haider, I., Aslam, M. & Toleikienė, M. (2019). Foliar applied iron and zinc improves the growth, physiological and yield related traits of wheat under drought. International Journal of Biosciences, 14. https://doi.org/10.12692/ijb/14.3.376-387
Jalal, A., Shah, S., Carvalho Minhoto Teixeira Filho, M., Khan, A., Shah, T., Ilyas, M. & Leonel Rosa, P. A. (2020). Agro-biofortification of zinc and iron in wheat grains. Gesunde Pflanzen, 72(3), 227–236. https://doi.org/10.1007/s10343-020-00505-7
Jha, Y. (2019). The importance of zinc-mobilizing rhizosphere bacteria to the enhancement of physiology and growth parameters for paddy under salt-stress conditions. Jordan Journal of Biological Sciences, 12(2), 167–173.
Kabała, K. & Janicka, M. (2023). Structural and functional diversity of two ATP-driven plant proton pumps. International Journal of Molecular Sciences, 24(5). https://doi.org/10.3390/ijms24054512
Kavian, S., Safarzadeh, S. & Yasrebi, J. (2022). Zinc improves growth and antioxidant enzyme activity in Aloe vera plant under salt stress. South African Journal of Botany, 147, 1221–1229. https://doi.org/10.1016/j.sajb.2022.04.011
Khan, M. A., Ali, A., Mohammad, S., Ali, H., Khan, T., Mashwani, Z.-R., Jan, A. & Ahmad, P. (2020). Iron nano modulated growth and biosynthesis of steviol glycosides in Stevia rebaudiana. Plant Cell, Tissue and Organ Culture (PCTOC), 143(1), 121–130. https://doi.org/10.1007/s11240-020-01902-6
Kiran, A., Wakeel, A., Mahmood, K., Mubaraka, R., Hafsa & Haefele, S. M. (2022). Biofortification of staple crops to alleviate human malnutrition: contributions and potential in developing countries. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020452
Kobayashi, T., Nozoye, T. & Nishizawa, N. K. (2019). Iron transport and its regulation in plants. Free Radical Biology and Medicine, 133, 11–20. https://doi.org/10.1016/j.freeradbiomed.2018.10.439
Kristin, N., Jutomo, L. & Boeky, D. L. A. (2022). Hubungan Asupan Zat Gizi Besi Dengan Kadar Hemoglobin Remaja Putri. Jurnal Kesehatan Masyarakat, 1(3).
Lafmejani, Z. N., Jafari, A. A., Moradi, P. & Ladan Moghadam, A. (2018). Impact of foliar application of iron-chelate and iron nano particles on some morpho-physiological traits and essential oil composition of peppermint ( Mentha piperita L.). Journal of Essential Oil Bearing Plants, 21(5), 1374–1384. https://doi.org/10.1080/0972060X.2018.1556122
Latifah, E., Boga, K. & Maryono, dan J. (2014). Pengenalan model kebun sayur sekolah untuk peningkatan konsumsi sayuran bagi para siswa di Kediri - Jawa Timur. Agriekonomika, 3(1). https://doi.org/10.21107/agriekonomika.v3i1.438
Li, J., Guo, Y. & Yang, Y. (2022). The molecular mechanism of plasma membrane H+-ATPases in plant responses to abiotic stress. Journal of Genetics and Genomics, 49(8), 715–725. https://doi.org/10.1016/j.jgg.2022.05.007
Ma, D., Sun, D., Wang, C., Ding, H., Qin, H., Hou, J., Huang, X., Xie, Y. & Guo, T. (2017). Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought Stress. Frontiers in Plant Science, 8.  https://doi.org/10.3389/fpls.2017.00860
Ma, J., Zhang, M., Liu, Z., Chen, H., Li, Y. C., Sun, Y., Ma, Q. & Zhao, C. (2019). Effects of foliar application of the mixture of copper and chelated iron on the yield, quality, photosynthesis, and microelement concentration of table grape (Vitis vinifera L.). Scientia Horticulturae, 254, 106–115. https://doi.org/10.1016/j.scienta.2019.04.075
Mahmoud, A. W. M., Ayad, A. A., Abdel-Aziz, H. S. M., Williams, L. L., El-Shazoly, R. M., Abdel-Wahab, A. & Abdeldaym, E. A. (2022). Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants, 11(19). https://doi.org/10.3390/plants11192599
Mannan, Md. A., Tithi, M. A., Islam, M. R., Al Mamun, Md. A., Mia, S., Rahman, Md. Z., Awad, M. F., ElSayed, A. I., Mansour, E. & Hossain, Md. S. (2022). Soil and foliar applications of zinc sulfate and iron sulfate alleviate the destructive impacts of drought stress in wheat. Cereal Research Communications, 50(4), 1279–1289. https://doi.org/10.1007/s42976-022-00262-5
Marian, E. & Tuhuteru, S. (2019). Pemanfaatan limbah cair tahu sebagai pupuk organik cair pada pertumbuhan dan hasil tanaman sawi putih (Brasica pekinensis). Agritrop : Jurnal Ilmu-Ilmu Pertanian (Journal of Agricultural Science), 17(2), 134. https://doi.org/10.32528/agritrop.v17i2.2663
Ministry of Health. (2019). Regulation of the Minister of Health No. 28 of 2019: Recommended Nutrient Intake for the Indonesian Population. Jakarta, Indonesia: Ministry of Health.
Mugenzi, I., Yongli, D., Ngnadong, W., Dan, H., Etienne, N., Twizerimana, A., Jiangbo, H., Agron, I. & Agri, R. (2018). Effect of combined zinc and iron application rates on summer maize yield, photosynthetic capacity and grain quality. 12(5), 36-46.
Nandal, V. & Solanki, M. (2021). Zn as a vital micronutrient in plants. Journal of Microbiology, Biotechnology and Food Sciences, 11(3), e4026. https://doi.org/10.15414/jmbfs.4026
Nasriyah, N., Rusnoto, R. & Supriyanto, S. (2023). Optimalisasi Perbaikan Gizi Keluarga Dalam Pencegahan Stunting Melalui Pemberdayaan Masyarakat. Jurnal Abdimas Indonesia, 4(2), 128-135. https://doi.org/10.26751/jai.v4i2.1702
Nikitovic, J., Andrijasevic, D., Krajisnik, T., Antic, M., Kajkut Zeljkovic, M., Samardzic, S. & Stojanovic, M. (2021). Influence of iron, zinc and bimetallic znfe nanoparticles on growth and biochemical characteristics in chickpea (Cicer arietinum) Cultivars. The Journal ‘Agriculture and Forestry’, 67(2). https://doi.org/10.17707/AgricultForest.67.2.13
Ningsih, C. S. & Entin Daningsih. (2022). Ketebalan daun dan laju transpirasi tanaman hias monokotil. Jurnal Ilmu Pertanian Indonesia, 27(4), 514-520. https://doi.org/10.18343/jipi.27.4.514
Niyigaba, E., Twizerimana, A., Mugenzi, I., Ngnadong, W. A., Ye, Y. P., Wu, B. M. & Hai, J. B. (2019). Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy, 9(5). https://doi.org/10.3390/agronomy9050250
Pertiwi, H. I. & Soverda, N. (2012). Pengaruh naungan tehadap kerapatan stomata dan trikoma daun serta pertumbuhan dan hasil dua varietas tanaman kedelai (Glycine max (L). Bioplantae, 1(3).
Prabowo, H., Yuniastuti, E., & Yunus, A. (2018). Effects of media combination with concentration of ab-mix nutrient on growth of banana shoots on in vitro. Bulgarian Journal of Agricultural Science, 24(3), 404–410.
Purwaningsih, W. (2020). Hubungan Pola Konsumsi Protein, Zat Besi, Seng dan Vitamin B12 dengan Indeks Massa Tubuh Pada Komunikasi Vegetarian Kota Bengkulu Tahun 2020 (Doctoral dissertation, Poltekkes Kemenkes Bengkulu)
Rai, S., Singh, P. K., Mankotia, S., Swain, J. & Satbhai, S. B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress, 1, 100008. https://doi.org/10.1016/j.stress.2021.100008
Rahayu, M., Purwanto, E., Setyawati, A., Sakya, A. T., Samanhudi, Yunus, A., Purnomo, D., Handoyo, G. C., Arniputri, R. B., & Na’imah, S. (2021). Growth and yield response of local soybean in the giving of various organic fertilizer. IOP Conference Series: Earth and Environmental Science, 905(1), 012028. https://doi.org/10.1088/1755-1315/905/1/012028
Rohman, S., Rohman, M. S., Febriyanti, N. A., Nisa, N. A., Hidayanto, O., Arifin, M., Fatoni, W., Nafisah, D., Mukaromah, R., Mas’udah, L. & Qoimah, S. (2023). Penyuluhan kesehatan di Desa Pancurwening tentang kenali stunting sejak dini. JIPM: Jurnal Inovasi Pengabdian Masyarakat, 1(1). https://doi.org/10.55903/jipm.v1i1.27
Ru, K., Hl, S. & Kunjadia, B. (2018). Effect of zinc and iron application on leaf chlorophyll, carotenoid, grain yield and quality of wheat in calcareous soil of Saurashtra region. International Journal of Chemical Studies, 6(4), 2092-2095.
Rugeles-Reyes, S. M., Cecílio, A. B., López Aguilar, M. A. & Silva, P. H. S. (2019). Foliar application of zinc in the agronomic biofortification of arugula. Food Science and Technology, 39, 1011–1017. https://doi.org/10.1590/fst.12318
Saboor, A., Ali, M. A., Danish, S., Ahmed, N., Fahad, S., Datta, R., Ansari, M. J., Nasif, O., Rahman, M. H. ur & Glick, B. R. (2021). Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97742-1
Saleem, M. H., Usman, K., Rizwan, M., Al Jabri, H. & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. https://doi.org/10.3389/fpls.2022.1033092
Sharma, A., Sharma, D. & Verma, S. K. (2023). A systematic in silico report on iron and zinc proteome of Zea mays. Frontiers in Plant Science, 14, 1166720. https://doi.org/10.3389/fpls.2023.1166720
Silaen, S. (2021). Pengaruh transpirasi tumbuhan dan komponen didalamnya. Agroprimatech, 5(1). https://doi.org/10.34012/agroprimatech.v5i1.2081
Soleh, M. A., Anjarsari, I. R. D. & Rosniawaty, S. (2020). Penurunan nilai konduktansi stomata, efisiensi penggunaan cahaya, dan komponen pertumbuhan akibat genangan air pada beberapa genotip tanaman tebu. Kultivasi, 19(2). https://doi.org/10.24198/kultivasi.v 19i2.22471
Stangoulis, J. C. R. & Knez, M. (2022). Biofortification of major crop plants with iron and zinc—Achievements and future directions. Plant and Soil, 474(1), 57–76. https://doi.org/10.1007/s11104-022-05330-7
Subba, P., Mukhopadhyay, M., Mahato, S. K., Bhutia, K. D., Mondal, T. K. & Ghosh, S. K. (2014). Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiology and Molecular Biology of Plants, 20(4), 461–473. https://doi.org/10.1007/s12298-014-0
254-2
Szerement, J., Szatanik-Kloc, A., Mokrzycki, J. & Mierzwa-Hersztek, M. (2022). Agronomic biofortification with Se, Zn, and Fe: an effective strategy to enhance crop nutritional quality and stress defense—a review. Journal of Soil Science and Plant Nutrition, 22(1), 1129–1159. https://doi.org/10.1007/s42729-021-00719-2
Taskin, M. B. & Gunes, A. (2022). Iron biofortification of wheat grains by foliar application of nano zero-valent iron (nZVI) and other iron sources with urea. Journal of Soil Science and Plant Nutrition, 22(4), 4642–4652. https://doi.org/10.1007/s42729-022-00946-1
Tolay, I. (2021). The impact of different Zinc (Zn) levels on growth and nutrient uptake of basil (Ocimum basilicum L.) grown under salinity stress. PLOS ONE, 16(2), e0246493. https://doi.org/10.1371/journal.pone.0246493
Wani, S. H., Khan, H., Riaz, A., Joshi, D. C., Hussain, W., Rana, M., Kumar, A., Athiyannan, N., Singh, D., Ali, N., Kang, M. S., Tariq, M., Keyani, R., Khalid, F., Jamil, M., Napar, A. A., Rajaram, S. & Mujeeb-Kazi, A. (2022). Chapter Six—Genetic diversity for developing climate-resilient wheats to achieve food security goals. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 171, pp. 255–303). Academic Press. https://doi.org/10.1016/bs.agron.2021.08.006
Weng, L., Zhang, M., Wang, K., Chen, G., Ding, M., Yuan, W., Zhu, Y., Xu, W. & Xu, F. (2020). Potassium alleviates ammonium toxicity in rice by reducing its uptake through activation of plasma membrane H+-ATPase to enhance proton extrusion. Plant Physiology and Biochemistry, 151, 429–437. https://doi.org/10.1016/j.plaphy.2020.03.040
Wimalasekera, R. (2019). Effect of Light Intensity on Photosynthesis. In Photosynthesis, Productivity and Environmental Stress (pp. 65–73). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119501800.ch4
Xia, H., Kong, W., Wang, L., Xue, Y., Liu, W., Zhang, C., Yang, S. & Li, C. (2019). Foliar Zn spraying simultaneously improved concentrations and bioavailability of Zn and Fe in maize grains irrespective of foliar sucrose supply. Agronomy, 9(7). https://doi.org/10.3390/agronomy9070386
Yunus, A., Samanhudi, Brahmanto, N., & Widyastuti, Y. (2018). Artemisia annua respon to various types of organic fertilizer and dose in lowland. IOP Conference Series: Earth and Environmental Science, 142, 012021. https://doi.org/10.1088/1755-1315/142/1/012021
Zaheer, I. E., Ali, S., Saleem, M. H., Ali, M., Riaz, M., Javed, S., Sehar, A., Abbas, Z., Rizwan, M., El-Sheikh, M. A. & Alyemeni, M. N. (2020). Interactive role of zinc and iron lysine on Spinacia oleracea L. growth, photosynthesis and antioxidant capacity irrigated with tannery wastewater. Physiology and Molecular Biology of Plants, 26(12), 2435–2452. https://doi.org/10.1007/s12298-020-00912-0
Zewide, I., & Sherefu, A. (2021). Review paper on effect of micronutrients for crop production. Nutrition and Food Processing, 4(7), 01–08. https://doi.org/10.31579/2637-8914/063
Zhang, G., Johkan, M., Hohjo, M., Tsukagoshi, S. & Maruo, T. (2017). Plant growth and photosynthesis response to low potassium conditions in three lettuce (Lactuca sativa) types. The Horticulture Journal, 86(2), 229–237. https://doi.org/10.2503/hortj.OKD-008
Zhang, R., Zhang, W., Kang, Y., Shi, M., Yang, X., Li, H., Yu, H., Wang, Y. & Qin, S. (2022). Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chemical and Biological Technologies in Agriculture, 9(1), 79. https://doi.org/10.1186/s40538-022-00346-8
Zhang, Y., Liang, Y., Han, J., Hu, X., Li, X., Zhao, H., Bai, L., Shi, Y. & Ahammed, G. J. (2023). Interactive effects of iron and photoperiods on tomato plant growth and fruit quality. Journal of Plant Growth Regulation, 42(1), 376–389. https://doi.org/10.1007/s00344-021-10554-5
Zhao, A., Yang, S., Wang, B. & Tian, X. (2019). Effects of ZnSO4 and Zn-EDTA applied by broadcasting or by banding on soil Zn fractions and Zn uptake by wheat (Triticum aestivum L.) under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 182(2), 307–317. https://doi.org/10.1002/jpln.201800341
Section
Research Articles

How to Cite

Physiological and biochemistry response of mustard greens (Brassica juncea var. Tosakan) to iron and zinc biofortification. (2024). Journal of Applied and Natural Science, 16(2), 457-469. https://doi.org/10.31018/jans.v16i2.5439