Application of Satellite and Geospatial technology for flash flood mapping over Himalayan with reference to Dharamshala in Himachal Pradesh, India during July 2021
Article Main
Abstract
Floods have devastating consequences for human life and economies worldwide. The present study focuses on flash flooding in the Himalayan environment, specifically in Dharamshala, Himachal Pradesh, India. In July 2021, a low-pressure system developed in the area, intensifying into a deep depression and resulting in extreme rainfall on July 12, 2021. This extreme rainfall event resulted flash flooding, landslides, and extensive damage in Dharamshala. Utilizing satellite observation and geospatial technology, this study examined the heavy rainfall events and the vulnerability of the geology of Dharamshala to flash flooding. The area received a cumulative rainfall of more than 370 mm, with over 35 mm recorded at 09:00 Universal Time Coordinated (UTC). The steep slopes of the region, combined with sudden heavy downpours from multiple extreme rainfall events, contributed to flash flooding and landslides. The consequences were severe, resulting in the loss of seven lives and impacting thousands of people in the study area. The research findings emphasize the significance of satellite-borne remote sensing applications and geospatial technology for real-time short-lived localised rainfall events in the study area. The study also highlights the role of Bhagsu Nala in exacerbating flood risks. This research provides a valuable model for implementing effective disaster mitigation measures. Moreover, it contributes to global efforts to reduce the risk of natural catastrophes, particularly in Himachal Pradesh. The findings offer valuable insights into disaster management and mitigation strategies.
Article Details
Article Details
Cumulative rainfall, Disaster mitigation, Flash flooding, Meteosat-8, Steep slope
Abdelkareem, M. (2017). Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat. Hazards, 85(1), 19-37. https://doi.org/10.1007/s11069-016-2556-x.
Arnold, D.& Guha, R.K.(2001). Nature and Cultural Imperialism: Essays on the Environmental History of South Asia. Oxford University Press Delhi.
Bhasin, R., Grimstad, E., Larsen, J. O., Dhawan, A. K., Singh, R., Verma, S. K. & Venkatachalam, K. (2002). Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya. Eng. Geol, 64(4), 351-368.https://doi.org/10.1016/S0013-7952(01)00096-5.
Bisht, S., Sharma, S. & Chaudhry, S. (2016). Flash flood risk susceptibility in Gagas River Watershed–Kumaun Lesser Himalaya. Int. J. Adv. Remote Sens. GIS, 5(5), 1709-1725.
Chaithong, T. (2022). Flash flood susceptibility assessment based on morphometric aspects and hydrological approaches in the Pai River Basin, Mae Hong Son, Thailand. Water, 14(19), 3174.https://doi.org/10.3390/w14193174.
Chakraborty, A., Srikanth, P., Murthy, C. S., Rao, P. V. N& Chowdhury, S. (2021). Assessing lodging damage of jute crop due to super cyclone Amphan using multi-temporal Sentinel-1 and Sentinel-2 data over parts of West Bengal, India. Environ. Monit. Assess. 193(8), 464. https://doi.org/10.1007/s10661-021-09220-w.
Costa, J. E. (1987). Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. J. hydrol, 93(3-4), 313-338.https://doi.org/10.1016/0022-1694(87)90102-8.
Cheng, C. T. & Chau, K. W. (2004). Flood control management system for reservoirs. Environmental Modelling & Software, 19(12), 1141-1150.https://doi.org/10.1016/j.envsoft.2003.12.004.
Das, S., Ashrit, R. & Moncrieff, M. W. (2006). Simulation of a Himalayan cloudburst event. J. Earth Syst. Sci, 115, 299-313. https://doi.org/10.1007/BF02702044
Dimri, A. P., Chevuturi, A., Niyogi, D., Thayyen, R. J., Ray, K., Tripathi, S. N., & Mohanty, U. C. (2017). Cloudbursts in Indian Himalayas: a review. Earth-Sci. Rev, 168, 1-23.https://doi.org/10.1016/j.earscirev.2017.03.006.
Da Silva, J. M. C. & Wheeler, E. (2017). Ecosystems as infrastructure. Perspectives in ecology and conservation, 15(1), 32-35.https:// doi.org/1 0.1016 /j.pec on. 2016 .11 .005.
Dutta, D., Herath, S., & Musiake, K. (2003). A mathematical model for flood loss estimation. J. Hydrol, 277(1-2), 24-49.https:doi. Org/10.1016/S0022-1694(03)00084-2
Gupta, V., Ram, B. K., Kumar, S. & Sain, K. (2022). A case study of the 12 July 2021 Bhagsunath (McLeod Ganj) flash flood in Dharamshala, Himachal Pradesh: A warning against constricting natural drainage. J Geol Soc India, 98(5), 607-610. https://doi.org/10.1007/s12594-022-2033-y.Geneletti, D., & Dawa, D. (2009). Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya. Environ. Impact Assess. Rev., 29(4), 229-242.https://doi.org/10.1016/j.eiar.2009.01.003.
Gupta, V., Ram, B. K., Kumar, S. & Sain, K. (2022). A Case Study of the 12 July 2021 Bhagsunath (McLeod Ganj) Flash Flood in Dharamshala, Himachal Pradesh: A Warning Against Constricting Natural Drainage. J. Geol Soc India, 98(5), 607-610.https://doi.org/10.1007/s12594-022-2033-y
Horton, R.E., 1932. Drainage basin characteristics. Trans. Am. Geophys. Unions. 13, 350-361. 10.1029/TR013i001p00350.
Houze Jr, R. A. (2012). Orographic effects on precipitating clouds. Rev. Geophys, 50(1).Indian land and oceanic regions; IEEE Trans. Geosci. Remote Sens. 51(7) 4349–4358.
El Kharraz, J., El-Sadek, A., Ghaffour, N., & Mino, E. (2012). Water scarcity and drought in WANA countries. Procedia Engineering, 33, 14-29.https://doi.org/10.1016/j.proeng.2012.01.1172
Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., ... & Ren, Y. (2019). Unravelling climate change in the Hindu Kush Himalaya: rapid warming in the mountains and increasing extremes. The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people, 57-97. https://doi.org/10.1007/978-3-319-92288-1_3
Kumar, A., Houze, R. A., Rasmussen, K. L. & Peters-Lidard, C. (2014). Simulation of a flash flooding storm at the steep edge of the Himalayas. J.Hydrometeorol, 15(1), 212-228.https://doi.org/10.1175/JHM-D-12-0155.1
Mirza, M. M. Q. (2011). Climate change, flooding in South Asia and implications. Regional Environmental Change, 11(Suppl 1), 95-107. https://doi.org/10.1007/s10113-010-0184-7
Mishra, A. K. (2012). A new technique to estimate precipitation at fine scale using multifrequency satellite observations over Indian land and oceanic regions. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 4349-4358.10.1109/TGRS.2012.2226733
Mishra, A. K. (2015). A study on the occurrence of flood events over Jammu and Kashmir during September 2014 using satellite remote sensing. Nat. Hazards, 78(2), 1463-1467. https://doi.org/10.1007/s11069-015-1768-9
Mishra, A. K. (2016). Monitoring Tamil Nadu flood of 2015 using satellite remote sensing. Nat. Hazards, 82(2), 1431-1434. https://doi.org/10.1007/s11069-016-2249-5
Mishra, A. K., Meer, M. S. & Nagaraju, V. (2019). Satellite-based monitoring of recent heavy flooding over north-eastern states of India in July 2019. Nat. Hazards, 97, 1407-1412. https://doi.org/10.1007/s11069-019-03707-z.
Mishra, A. K., Meer, M. S. & Nagaraju, V. (2024). Exploring extreme flood events of a western state of India during monsoon season of 2019 from space. MAUSAM, 75(1), 245-248.
Mishra, A. K. (2021). Observing a severe flooding over southern part of India in monsoon season of 2019. J. Earth Syst. Sci. 130, 1-8. https://doi.org/10.1007/s12040-020-01509-7
Nibanupudi, H. K. & Shaw, R. (Eds.). (2015). Mountain hazards and disaster risk reduction. Springer Japan.
Nüsser, M. (2000). Change and persistence: contemporary landscape transformation in the Nanga Parbat region, northern Pakistan. Mountain Research and Development, 348-355.
Nicholson, A. R., O'Donnell, G. M., Wilkinson, M. E. & Quinn, P. F. (2020). The potential of runoff attenuation features as a Natural Flood Management approach. J. Flood Risk Manag, 13, e12565 .https: //doi .org /10. 1111/jfr3.12565.
Nagamani, K., Mishra, A.K., Meer, M.S.(2024). Understanding flash flooding in the Himalayan Region: a case study. Sci Rep 14, 7060. https://doi.org/10.1038/s41598-024-53535-w.
Pandey, B. W. (2002). Geoenvironmental Hazards in Himalaya: Assessment and Mapping (the Upper Beas Basin). Mittal Publications.
Pandey, B. W. (Ed.). (2014). Dynamics of Land Use Change: Sustainability and Management. Research India Press.
Perkins-Kirkpatrick, S. E., Stone, D. A., Mitchell, D. M., Rosier, S., King, A. D., Lo, Y. E.,& Wehner, M. (2022). On the attribution of the impacts of extreme weather events to anthropogenic climate change. Environ. Res. Lett. 17(2), 024009.DOI 10.1088/1748-9326/ac44c8
Pham, N. T. T., Nong, D., Sathyan, A. R., &Garschagen, M. (2020). Vulnerability assessment of households to flash floods and landslides in the poor upland regions of Vietnam. Climate Risk Management, 28, 100215.https://doi.org/10.1016/j.crm.2020.100215
PMD. Government of Pakistan, (2022). Pakistan Meteorological Department—Pakistan’s Monthly Climate Summary August.
Prasad, A. S., Pandey, B. W., Leimgruber, W., & Kunwar, R. M. (2016). Mountain hazard susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geoenvironmental Disasters, 3(1), 1-17. https://doi.org/10.1186/s40677-016-0037-x
Qamer, F. M., Abbas, S., Ahmad, B., Hussain, A., Salman, A., Muhammad, S., ... & Thapa, S. (2023). A framework for multi-sensor satellite data to evaluate crop production losses: the case study of 2022 Pakistan floods. Sci. Rep. 13(1), 4240. https://doi.org/10.1038/s41598-023-30347-y.
Rawat, P. (2013). GIS modeling on mountain geodiversity and its hydrological responses: In view of climate change. LAP Lambert Academic Publishing.
Rawat, P. K., & Pant, C. C. (2007). Geo-hydrology of Dabka watershed, using remote sensing and GIS in management strategy for the Indian Himalayan development and conservation, eds. Pratap: Rawat MMS.
Rawat, P. K., Tiwari, P. C., Pant, C. C., Sharama, A. K., & Pant, P. D. (2011). Modelling of stream run-off and sediment output for erosion hazard assessment in Lesser Himalaya: need for sustainable land use plan using remote sensing and GIS: a case study. Nat.hazds. 59, 1277-1297. https://doi.org/10.1007/s11069-011-9833-5.
Romshoo, S. A., Rafiq, M., & Rashid, I. (2018). Spatio-temporal variation of land surface temperature and temperature lapse rate over mountainous Kashmir Himalaya. J. Mt. Sci. 15(3), 563-576. https://doi.org/10.1007/s11629-017-4566-x.
Sah, M. P. & Mazari, R. K. (1998). Anthropogenically accelerated mass movement, Kulu Valley, Himachal Pradesh, India. Geomorphology, 26(1-3), 123-138.https://doi.org/10.1016/S0169-555X(98)00054-3.
Sah, M. P., Virdi, N. S. &Bartarya, S. K. (1996). Slope failure and damming of river channels: some examples from the Satluj Valley, Himachal Pradesh. Himal. Geol. 17(1&2), 183-191.
Samantaray, P. & Gouda, K. C. (2023). A review on the extreme rainfall studies in India. Nat. Hazards Res.https://doi.org/10.1016/j.nhres.2023.08.005.
Sanyal, J. & Lu, X. X. (2004). Application of remote sensing in flood management with special reference to monsoon Asia: a review. Nat. Hazards, 33, 283-301. https://doi.org/10.1023/B:NHAZ.0000037035.65105.95
Smith, L. C. (1997). Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. processes, 11(10), 1427-1439.https://doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S.
Stone, D. A., Rosier, S. M. & Frame, D. J. (2021). The question of life, the universe and event attribution. Nat. Clim. Change. 11(4), 276-278. https://doi.org/1 0.1038 /s4155 8-021-01012-x
Strahler, A. N. (1953). Revisions of Horton’s quantitative factors in erosional terrain. Trans. Am. Geophys. Union, 34, 345.
Santangelo, N., Forte, G., De Falco, M., Chirico, G. B. & Santo, A. (2021). New insights on rainfall triggering flow-like landslides and flash floods in Campania (Southern Italy). Landslides, 18(8), 2923-2933. https://doi.org/10.1007/s10346-021-01667-9.
Tavus, B., Kocaman, S. & Gokceoglu, C. (2022). Flood damage assessment with Sentinel-1 and Sentinel- data after Sardoba dam break with GLCM features and Random Forest method. Sci. Total Environ, 816, 151585.https://doi. org/10.10 16/j. scito tenv.2021.151585
Tay, C. W., Yun, S. H., Chin, S. T., Bhardwaj, A., Jung, J. & Hill, E. M. (2020). Rapid flood and damage mapping using synthetic aperture radar in response to Typhoon Hagibis, Japan. Scientific data, 7(1), 100. https://doi.org/10.1038/s41597-020-0443-5.
Thomas, V. & López, R. (2015). Global increase in climate-related disasters. Asian Development Bank Economics Working Paper Series, (466).
Tucker, R. P. (1982). The forests of the Western Himalayas: the legacy of British colonial administration. Jo. For. Hist, 26(3), 112-123.
Uddin, K., Matin, M. A. & Meyer, F. J. (2019). Operational flood mapping using multi-temporal Sentinel-1 SAR images: A case study from Bangladesh. Remote Sensing, 11(13), 1581. https://doi.org/10.3390/rs11131581.
Wakatsuki, H., Ju, H., Nelson, G. C., Farrell, A. D., Deryng, D., Meza, F. & Hasegawa, T. (2023). Research trends and gaps in climate change impacts and adaptation potentials in major crops. Curr. Opin. Env. Sust. 60, 101249.https://doi. org/10. 1016/j.cosust.2022.101249.
Wheater, H. & Al Weshah, R. (2002). Hydrology of wadi systems: IHP regional network on Wadi hydrology in the Arab region.
Wescoat, J. L. (2019). From nallah to nadi, stream to sewer to stream: Urban waterscape research in India and the United States. In Water Histories of South Asia (pp. 135-157). Routledge India.
Youssef, A. M., Pradhan, B., Gaber, A. F. D. & Buchroithner, M. F. (2009). Geomorphological hazard analysis along the Egyptian Red Sea coast between Safaga and Quseir. Curr. Opin. Env. Sust. 9(3), 751-766. https://doi.org/10 .51 94 /nhess-9 -751-2009, 2009.
Wester, P., Mishra, A., Mukherji, A. & Shrestha, A. B. (2019). The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people (p. 627). Springer Nature. https://doi.org/10.1007/978-3-319-92288-1
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)