##plugins.themes.bootstrap3.article.main##

Safwan Jasim Sultan Zaid Tahseen Qaddawi Amjad Abdul-Hadi Mohammed

Abstract

The Fabaceae genus Trifolium comprises around 250 species widely distributed worldwide, with the temperate Northern Hemisphere exhibiting the highest variety. The plants in this genus are widely used as livestock fodder crops and are particularly significant economically.This study's objective included isolating bacteria from the root nodules of the Trifolium repens plant and diagnosing it at the molecular and microbiological levels. T. repens root nodules were used as the source of an endophytic bacteria isolated on Yeast Extract Mannitol (YEM) media that had solidified and diagnosed at the molecular level by DNA Sequencing technique for analysis of the sequence of the nitrogenous bases of 16S rRNA gene with the global database. The isolated bacteria were characteristic of greyish-white color after 48 hours of growth and appeared as a circular shape, slightly convex and gram-negative. The bacteria were resistant to the antibiotics 20µg/ml Aztreonam.The DNA sequencing technique for analysis of the sequence of the nitrogenous bases of 16S rRNA gene with the global database of the National Center for Biotechnology Information (NCBI) showed that the isolated bacteria was at least 96.22% similar to the species Acinetobacter baumannii As a result, it was recorded for the first time as Acinetobacter sp. AZS1 strain in NCBI.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antibiotic test, Acinetobacter baumannii, Sequencing, Trifolium repens, 16s rRNA

References
Ababneh, Q., Al-Rousan, E. & Jaradat, Z. (2022). Fresh produce as a potential vehicle for transmission of Acinetobacter baumannii. International Journal of Food Contamination, 9(1), 5. https://doi.org/10.1186/s40550-022-00092-7
Al Manar, P., Hikmat, A. & Zuhud, E. A. M. (2023, September). The role of Leguminosae plants for soil fertility in oil palm plantations. In IOP Conference Series: Earth and Environmental Science, 1243(1), 012016. DOI 10.1088/1755-1315/1243/1/012016
Canciello, S., Parisi, M., Lucidi, M., Visca, P. & Cincotti, G. (2023). An image processing‐based quantification of gram variability in Acinetobacter baumannii. Microscopy Research and Technique, 86(3), 378-382. https://doi.org/10.1002/jemt.24271
Castanheira, M., Mendes, R. E. & Gales, A. C. (2023). Global epidemiology and mechanisms of resistance of Acinetobacter baumannii-calcoaceticus complex. Clinical Infectious Diseases, 76(Supplement_2), S166-S178. https://doi.org/10.1093/cid/ciad109
Cochrane, S. A. & Lohans, C. T. (2020). Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. European journal of medicinal chemistry, 194, 112262. https://doi.org/10.1016/j.ejmech.2020.112262
El-Zanaty, A. F., Abdel-Lateif, K. & Elsobky, M. (2014). Molecular identification of Rhizobium isolates nodulating Faba bean plants in Egyptian soils. J. Bioprocess Biotech., 5, 1-4. DOI: 10.4172/2155-9821.1000194
Godschalx, A. L., Tran, V. & Ballhorn, D. J. (2017). Host plant cyanotype determines degree of rhizobial symbiosis. Ecosphere, 8(9), e01929. https://doi.org/10.1002/ecs2.1929
Liao, H., Lin, X., Li, Y., Qu, M., & Tian, Y. (2020). Reclassification of the taxonomic framework of orders cellvibrionales, oceanospirillales, pseudomonadales, and alteromonadales in class gammaproteobacteria through phylogenomic tree analysis. Msystems, 5(5), 10-1128. DOI: https://doi.org/10.1128/msystems.00543-20
Mathesius, U. (2022). Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. Journal of Plant Physiology, 276, 153765. https://doi.org/10.1016/j.jplph.2022.153765
Mujumdar, S., Bhoyar, J., Akkar, A., Hundekar, S., Agnihotri, N., Jaybhay, P. & Bhuyan, S. (2023). Acinetobacter: A versatile plant growth-promoting rhizobacteria (PGPR). In Plant-microbe interaction-recent advances in molecular and biochemical approaches (pp. 327-362). Academic Press. https://doi.org/10.1016/B978-0-323-91875-6.00009-8.
Papik, J., Folkmanova, M., Polivkova-Majorova, M., Suman, J. & Uhlik, O. (2020). The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology Advances, 44, 107614. https://doi.org/10.1016/j.biotechadv.2020.107614
Prajapati, J., Yadav, J., Jaiswal, D. K., Prajapati, B., Tiwari, S., & Yadav, J. (2022). Salt tolerant indigenous zn solubilizing bacteria isolated from forest organic soils promotes yield and root growth in oryza sativa under zinc deficient alluvial soil. Geomicrobiology Journal, 39(6), 465-476. https://doi.org/10.1080/01490451.2022.2028941
Silva, J. C. D., Santos, L. D. S., Faria, P. S. A., Silva, F. G., Rubio Neto, A., Martins, P. F. & Selari, P. J. R. G. (2021). Multifunctional characteristics of Acinetobacter lwoffii Bac109 for growth promotion and colonization in micropropagated sugarcane. Pesquisa Agropecuária Tropical, 51, e69373. https://doi.org/10.1590/1983-40632021v5169373
Sun, N., Chen, Y., and Guo, W. (2023). Identification and characterization of pancreatic infections in severe and critical acute pancreatitis patients using 16S rRNA gene next generation sequencing. Frontiers in Microb
iology, 14, 1185216. https://doi.org/10.3389/fmicb.2023.1185216
Tokgöz, S., Lakshman, D. K., Ghozlan, M. H., Pinar, H., Roberts, D. P., and Mitra, A. (2020). Soybean nodule-associated non-rhizobial bacteria inhibit plant pathogens and induce growth promotion in tomato. Plants, 9(11), 1494. https://doi.org/10.3390/plants9111494
Volokhov, D. V., Zagorodnyaya, T. A., Furtak, V. A., Nattanmai, G., Randall, L., Jose, S. & Mitchell, K. K. (2023). Neisseria montereyensis sp. nov., isolated from oropharynx of California sea lion (Zalophus californianus): genomic, phylogenetic, and phenotypic study. Current Microbiology, 80(8), 253. https://doi.org/10.1007/s00284-023-03380-3
Weldrick, P. J.; Hardman, M. J. & Paunov, V. N. (2021). Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria. Materials Chemistry Frontiers, 5(2), 961-972.‏ DOI: 10.1039/D0QM00874E
Zhang, K. S., Nadkarni, A. V., Paul, R., Martin, A. M., & Tang, S. K. (2022). Microfluidic surgery in single cells and multicellular systems. Chemical Reviews, 122(7), 7097-7141. https://doi.org/10.1021/acs.chemrev.1c00616.
Section
Research Articles

How to Cite

Molecular diagnosis of bacteria isolated from Trifolium repens root nodules. (2024). Journal of Applied and Natural Science, 16(3), 1153-1157. https://doi.org/10.31018/jans.v16i3.5404