Pycocyanin: A virulence factor of Pseudomonas aeruginosa in the disruption of brain homeostasis regulation in gold fish Carassius auratus
##plugins.themes.bootstrap3.article.main##
Abstract
Recent reports reported that the oral and gut microorganisms are responsible for the regulation of the brain homeostasis mechanism. This brain homeostasis mechanism is affected by the colonization of non-periodontic microorganisms in the oral cavity and the gut compared to periodontic pathogens. Among the non-periodontic microorganisms, Pseudomonas aeruginosa is one of the gram-negative bacilli that play a major role in the development of cognitive impairment through the production of a secondary metabolite called pycocyanin.The present study aimed to test the effect of pycocyanin on the development of cognitive impairment for the first time with the help of a comparative two-staged behavioral analysis: non-infusive behavioral studies (NBS) and infusive behavioral studies (IBS) of goldfish Carassius auratus. Non-infusive behavioral experimental groups (BEGs) used in the NBS mimicked the condition of a healthy state and infusive behavioral experimental groups (BEGs) either received isolated metabolites and microbial cultures of the day – 3, 4, 5, and 6 in the form of oral infusions. Effect of metabolite/ microbial culture in the infusive study groups was proved by comparing the behavioral scores of non-infusive groups. Employed two-staged behavioral analysis proved that cognitive impairment induction (75-79%) was higher in the metabolite oral infusions compared to the microbial oral infusions in the behavioral study groups. Obtained results showed that induction of cognitive impairment resulted from reactive oxygen species (ROS) production and neuroinflammation was high in the brain regions due to the transportation of administrated metabolite from the gut to the brain in its purest form compared to the microbial oral infusions.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Cognition, Neuroinflammation, Oral-Gut-Brain axis, Pseudomonas aeruginosa, Pycocyanin
Abdulkareem, A.A., Al-Taweel, F.B., Al-Sharqi, A.J.B., Gul, S.S., Sha, A. & Chapple, I.L.C. (2023). Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J. Oral Microbiol., 15(1), 2197779. https://doi.org/10.1080/20002297.2023.2197779.
Ahnaou, A., Rodriguez-Manrique, D., Embrechts, S., Biermans, R., Manyakov, N.V., Youssef, S.A. & Drinkenburg, W.H.I.M. (2020). Aging Alters Olfactory Bulb Network Oscillations and Connectivity: Relevance for Aging-Related Neurodegeneration Studies. Neural Plast., 2020, 1703969. https://doi.org/10.1155/2020/1703969.
Appleton, J. (2018). The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr. Med., 17(4), 28-32.
Avchalumov, Y. & Mandayam, C.D. (2021). Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci., 11(3), 404. https://doi.org/10.3390/brainsci11030404.
Bowland, G.B. & Weyrich, L.S. (2022). The Oral-Microbiome-Brain Axis and Neuropsychiatric Disorders: An Anthropological Perspective. Front. Psychiatry, 13, 810008. https://doi.org/10.3389/fpsyt.2022.810008.
Chen, J., Ding, Q., An, L., & Wang, H. (2022). Ca2+ -stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Front. Pharmacol., 13, 949384. https://doi.org/10.3389/fphar.2022.949384.
Chen, Y., Xu, J. & Chen, Y. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13(6), 2099. https://doi.org/10.3390/nu13062099.
Chidambaram, S.B., Essa, M.M., Rathipriya, A.G., Bishir, M., Ray, B., Mahalakshmi, A.M., Tousif, A.H., Sakharkar, M.K., Kashyap, R.S., Friedland, R.P. & Monaghan, T.M. (2022). Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol. Ther., 231, 107988. https://doi.org/10.1016/j.pharmthera.2021.107988.
Cicchinelli, S., Rosa, F., Manca, F., Zanza, C., Ojetti, V., Covino, M., Candelli, M., Gasbarrini, A., Franceschi, F. & Piccioni, A. (2023). The Impact of Smoking on Microbiota: A Narrative Review. Biomedicines, 11(4), 1144. https://doi.org/10.3390/biomedicines11041144.
Dicks, L.M.T. (2022). Gut Bacteria and Neurotransmitters. Microorganisms, 10(9), 1838. https://doi.org/10.3390/microorganisms10091838.
Diggle S.P. & Whiteley M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166(1), 30-33. https://doi.org/10.1099/mic.0.000860.
Ganesh, A., Bogdanowicz, W., Balamurugan, K., Varman, D.R. & Rajan, K.E. (2012). Egr-1 antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx. Brain Res., 1471, 33-45. https://doi.org/10.1016/j.brainres.2012.06.038.
Ganesh, A., Bogdanowicz, W., Haupt, M., Marimuthu, G., & Rajan, K.E. (2010). Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Brain Res., 1352, 108-117. https://doi.org/10.1016/j.brainres.2010.06.058.
Georges, F.M., Do, N.T. & Seleem, D. (2022). Oral dysbiosis and systemic diseases. Front. Dent. Med., 3, 995423. https://doi.org/10.3389/fdmed.2022.995423.
Höglund, E., Øverli, Ø. & Winberg, S. (2019). Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Front. Endocrinol.,10, 158. https://doi.org/10.3389/fendo.2019.00158.
Hou, K., Wu, Z., Chen, X., Wang, J., Zhang, D., Xiao, C., Zhu, D., Koya, J.B., Wei, L., Li, J. & Chen, Z. (2022). Microbiota in health and diseases. Signal Transduct. Target. Ther., 7(1), 135. https://doi.org/10.1038/s41392-022-00974-4.
Hu, G., Zhu, Y., Ding, S. & Zheng, L. (2023). Role of gut microbiota in the 5-hydroxytyptamine signal transduction mechanism. Metabolism and Translational Medicine, 2023, 1. https://doi.org/10.54844/mtm.2023.0344.
Jabłońska, J., Augustyniak, A., Dubrowska, K. & Rakoczy, R. (2023). The two faces of pycocyanin – why and how to steer its production? World J. Microbiol. Biotechnol.,39(4), 103. https://doi.org/10.1007/s11274-023-03548-w.
Jiang, X., Ma, X., Sanford, R. & Li, X. (2024). Adapting to changes in Communication: The Orbitofrontal Cortex in Language and Speech Processing. Brain Sci., 14(3), 264. https://doi.org/10.3390/brainsci14030264.
Kilian, M., Chapple, I.L.C., Hannig, M., Marsh, P.D., Meuric, V., Pedersen, A.M.L., Tonetti, M.S., Wade, W.G. &Zaura, E. (2016). The oral microbiome – an update for oral healthcare professionals. Br. Dent. J., 221(10), 657-666. https://doi.org/10.1038/sj.bdj.2016.865.
Kourosh-Arami, M., Hosseini, N. & Komaki, A. (2021). Brain is modulated by neuronal plasticity during postnatal development. J. Physiol. Sci., 71, 34. https://doi.org/10.1186/s12576-021-00819-9.
Krockow, E.M., Cheng, K.O., Maltby, J. & McElory, E. (2023). Existing terminology related to antimicrobial resistance fails to evoke risk perceptions and be remembered. Commun. Med., 3, 149. https://doi.org/10.1038/s43856-023-00379-6.
Kumar, A., Sivamaruthi, B.S. & Dey, S. (2024). Probiotics as modulators of gut-brain axis for cognitive development. Front. Pharmacol., 15, 1348297. https://doi.org/10.3389/fphar.2024.138297.
Kuraji, R., Ye, C., Zhao, C., Gao, L., Martinez, A., Miyashita, Y., Radiac, A., Kamarajan, P., Le, C., Zhan, L., Range, H., Sunohara, M., Numabe, Y. & Kapila, Y.L. (2024). Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms. Microbiomes, 10(1), 3. https://doi.org/10.1038/s41522-024-00476-x.
Langford, B.J., Daneman, N., Leung, V. & Langford, D.J. (2020). Cognitive bias: how understanding its impact on antibiotic prescribing decisions can help advance antimicrobial stewardship. JAC Antimicrob. Resist., 2(4), dlaa107. https://doi.org/10.1093/jacamr/dlaa107.
Li, R., Wang, J., Xiong, W., Luo, Y., Feng, H., Zhou, H., Peng, Y., He, Y., & Ye, Q. (2024). The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer’s disease? Front. Microbiol., 15, 1358179. https://doi.org/10.3389/fmicb.2024.1358179.
Lisek, M., Tomczak, J., Boczek, T. & Zylinska, L. (2024). Calcium-Associated Proteins in Neuroregeneration. Biomolecules., 14(2), 183.https://doi.org/10.3390/biom.140 20183.
Liu, N., Sun, S., Wang, P., Sun, Y., Hu, Q. & Wang, X. (2021). The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int. J. Mol. Sci., 22(15), 7931. https://doi.org/10.3390/ijms22157931.
Maffei, M.E. (2020). 5-hydroxytryptophan (5-HTP): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology. Int. J. Mol. Sci., 22(1), 181.https://doi.org/10.3390/ijms22010181.
Marzola, P., Melzer, T., Pavesi, E., Gil-Mohapel, J. & Brocardo, P.S. (2023). Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci., 13(12), 1610. https://doi.org/10.3390/brainsci13121610.
Moradali, M.F., Ghods, S. & Rehm, B.H.A. (2017). Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol., 7, 39. https://doi.org/10.3389/fcimb.2017.00039.
Mudaliar, S.B. & Prasad, A.S.B. (2024). A biomedical perspective of pycocyanin from Pseudomonas aerruginosa: its applications and challenges. World J. Microbiol. Biotechnol., 40(3), 90. https://doi.org/10.1007/s11274-024-03889-0.
Mukilan, M., Elakkiya, V., Darshini, M. & Varshini, M. (2024a). Exploring the Potential Role of Lactobacillus plantarum in the Reversal of Induced Cognitive Long-term Memory Impairment. Journal of Experimental Biology and Agricultural Sciences, 12(2), 175-187. https://doi.org/10.18006/2024.12(2).175.187.
Mukilan, M., Antony Mathew, M.T., Yaswanth, S. & Mallikarjun, V. (2024b). Role of Probiotic Strain Lactobacillus acidophilus in the Reversal of Gut Dysbiosis Induced Brain Cognitive Decline. Journal of Experimental Biology and Agricultural Sciences, 12(1), 36-48. https://doi.org/10.18006/2024.12(1).36.48.
Mukilan, M. (2023). Impact of Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli Oral Infusions on Cognitive Memory Decline in Mild Cognitive Impairment. Journal of Experimental Biology and Agricultural Sciences, 11(3), 581-592. https://doi.org/10.18006/2023.11(3).581.592.
Mukilan, M. (2022). Effect of Probiotics, Prebiotics and Synbiotic Supplementation on Cognitive Impairment: A Review. Journal of Experimental Biology and Agricultural Sciences, 10(1), 1-11. https://doi.org/10.18006/2022.10(1).1.11.
Mukilan, M., Bogdanowicz, W., Marimuthu, G. & Rajan, K.E. (2018a). Odour discrimination learning in the Indian greater short-nosed fruit bat (Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus. J. Exp. Biol., 221(Pt 12), jeb175364 .https://doi.org/10.1242/jeb.175364.
Mukilan, M., Rajathei, D.M., Jeyaraj, E., Kayalvizhi, N. & Rajan, K.E. (2018b). MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx. Gene, 671, 10-20. https://doi.org/10.1016/j.gene.2018.05.107.
Mukilan, M., Varman, D.R., Sudhakar, S. & Rajan, K.E. (2015). Activity-dependent expression of miR-132 regulates immediate early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx. Neurobiol. Learn. Mem., 120, 41-51. https://doi.org/10.1016/j.nlm.2015.02.010.
Muteeb, G., Rehman, Md.T., Shahwan, M. & Aatif, M. (2023). Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals, 16(11), 1615. https://doi.org/10.3390/ph16111615.
Nie, Q., Wan, X., Tao, X., Yang, Q., Zhao, X., Liu, H., Hu, J., Luo, Y., Shu, T., Geng, R., Gu, Z., Fan, F. & Liu, Z. (2023). Multi-function screening of probiotics to improve oral health and evaluating their efficacy in a rat periodontitis model. Front. Cell. Infect. Microbiol., 13, 1261189. https://doi.org/10.3389/fcimb.2023.1261189.
Pisano, M. (2023). Oral Dysbiosis and Systemic Diseases: A Two-Way Relationship? Medcina, 59(11), 1933. https://doi.org/10.3390/medicina59111933.
Pitchaikani, S., Mukilan, M., Govindan, P., Kathiravan, G. & Shakila, H. (2024). Highlighting the Importance of Matrix Metalloproteinase 1,8, and 9 Expression during the Progression of Mycobacterium tuberculosis Infection. Journal of Experimental Biology and Agricultural Sciences, 12(1), 49-59. https://doi.org/10.18006/2024.12(1).49.59.
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X. & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther., 7(1), 199. https://doi.org/10.1038/s41392-022-01056-1.
Radaic, A. & Kapila, Y.L. (2021). The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput. Struct. Biotechnol. J., 19, 1335-1360. https://doi.org/10.1016/j.csbj.2021.02.010.
Rajan, K.E. (2021). Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. J. Comp. physiol. A. Neuroethol. Sens. Neural Behav. Physiol., 207(5), 667-679. https://doi.org/10.1007/s00359-021-01505-2.
Rashid, M.I., Rashid, H., Andleeb, S. & Ali, A. (2022). Evaluation of Blood-Brain-Barrier Permeability, Neurotoxicity, and Potential Cognitive Impairment by Pseudomonas aeruginosa’s Virulence Factor Pyocyanin. Oxid. Med. Cell. Longev., 2022, 3060579. https://doi.org/10.1007/s00359-021-01505-2.
Redelinghuys, C. (2020). Serotonin/5-hydroxytryptamine (5-HT) physiology. South Afr. J. Anaesth. Analg., 26(6 Suppl 3), S149-152. https://doi.org/10.36303/SAJAA.2020.26.6.S3.2561.
Ribero, A.A. & Paster, B.J. (2023). Dental caries and their microbiomes in children: what do we do now? J. Oral Microbiol., 15(1), 2198433. https://doi.org/10.1 080/20002297.2023.2198433.
Santacroce, L., Passarelli, P.C., Azzolino, D., Bottalico, L., Charitos, I.A., Cazzolla, A.P., Colella, A.P., Colella, M., Topi, S., Godoy, F.G. & D’Addona, A. (2023). Oral microbiota in human helath and disease: A perspective. Exp. Biol. Med., 248(15), 1288-1301. https://doi.org/10.1177/15353702231187645.
Sasso, J.M., Ammar, R.M., Tenchov, R., Lemmel, S., Kelber, O., Grieswelle, M. & Zhou, Q,A. (2023). Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem. Neurosci., 14(10), 1717-1763. https://doi.org/10.1021/acschemneuro.3c00127.
Sedghi, L., Dimassa, V., Harrington, A., Lynch, S.V. & Kapila, Y.L. (2021). The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol., 2000, 87(1), 107-131. https://doi.org/10.1111/prd.12393.
Shouman, H., Saidm, H.S., Kenawy, H.I. & Hassan, R. (2023). Molecular and biological characterization of pycocyanin from clinical and environmental Pseudomonas aeruginosa. Microb. Cell Fact., 22(1), 166. https://doi.org/10.1186/s12934-023-02169-0.
Stahl, A., Noyes, N.C., Boto, T., Botero, V., Broyles, C.N., Jing, M., Zeng, J., King, L.B., Li, Y., Davis, R.L. & Tomchik, S.M. (2022). Associative learning drives longitudinally graded presynaptic plasticity of neurotransmitter release along axonal compartments. Elife, 11, e76712. https://doi.org/10.7554/eLife.76712.
Stefano, M.D., Santonocito, S., Polizzi, A., Mauceri, R., Troiano, G., Giudice, A.L., Romano, A., Mascitti, M. & Isola, G. (2023). A Reciprocal Link between Oral, Gut Microbiota during periodontitis: The Potential Role of Probiotics in Reducing Dysbiosis-Induced Inflammation. Int. J. Mol. Sci., 24(2), 1084. https://doi.org/10.3390/ijms24021084.
Tanaka, M., Toldi, J. & Vécsei, L. (2020). Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int. J. Mol. Sci., 21(7), 2431. https://doi.org/10.3390/ijms21072431.
Thangaleela, S., Shanmugapriya, V., Mukilan, M., Radhakrishnan, K. & Rajan, K.E. (2018). Alterations in MicroRNA-132/212 Expression Impairs Fear Memory in Goldfish Carassius auratus. Ann. Neurosci., 25(2), 90-97. https://doi.org/10.1159/000486842.
Visentin, D., Gobin, I. & Maglica, Ž. (2023). Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms, 11(7), 1832. https://doi.org/10.3390/microorganisms11071832.
Zhou, T., Xu, W., Wang, Q., Jiang, C., Li, H., Chao, Y., Sun, Y. & Lan A. (2023). The effect of the “Oral-Gut” axis on periodontitis in inflammatory bowel disease: A review of microbe and immune mechanism associations. Front. Cell. Infect. Microbiol., 13, 1132420. https://doi.org/10.3389/fcimb.2023.1132420.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)