Article Main

Somia Eissa Sharawi

Abstract

The global population is predicted to reach 9.3 billion by 2050, increasing food production substantially and posing significant food security risks, particularly for low-income countries. The widening food security gap necessitates innovative, sustainable solutions. In response, promoting edible insects as a viable food source gained momentum, addressing malnutrition and food insecurity. The Kingdom of Saudi Arabia, one of the world's largest countries, has many edible insects. As a result of its unique challenges, Saudi Arabia explores insects as a vital source for enhancing food security, such as Crickets, Mealworms, Black Soldier Flies, Buffalo's, Grasshoppers, Ants, Silkworms, and Cicadas. The Kingdom's commitment to Vision 2030, focusing on sustainable development, underscores the importance of incorporating insects into agricultural processes and food manufacturing. Despite the promising nutritional benefits, challenges such as potential toxicity, pesticide residues, heavy metals, and allergic reactions require careful consideration. Collaborative efforts involving the public and private sectors, universities, and large-scale breeding laboratories are essential to realize the full potential of edible insects. This review article delves into the nutritional value of edible insect orders found in the Kingdom, examining protein, lipid, carbohydrate, nucleic acid, mineral, and vitamin content. The review emphasizes the need for extensive research to understand the nutritional composition of diverse insect species in Saudi Arabia.


 

Article Details

Article Details

Keywords

Edible insects, Food sustainability, Insects, Insect orders, Kingdom of Saudi Arabia

References
Abdel-Dayem M. S., El-Ghiet U. M. A., Elsheikh T. M., Elgharbawy A. A., Al-Fifi Z. I. & Aldhafer H. M. (2020). The first survey of the beetles (Coleoptera) of the Farasan Archipelago of the southern Red Sea, Kingdom of Saudi Arabia. ZooKeys, 959,17.‏ Doi: 10.3897/zookeys.959.51224
Ahmad Z. (2023). Assessment of natural enemies of honeybee (Apis mellifera jemenitica) in the Asir region, Southwestern, Saudi Arabia. Journal of King Saud University-Science, 35(6),102781.‏ https://doi.org/10.1016/j.jksus.2023.102781.
Al Yousef A. B. F., Keridis A. & Ahmed L. (2015). Checklist of the family Anthomyiidae (Diptera) from Saudi Arabia. Egyptian Academic Journal of Biological Sciences. A, Entomology, 8(2), 25-34.‏ Doi: 10.21608/eajbsa.2015.12898
Alajmi R., Mashaly A., Al-Otaibi N., Mahmoud A. & Ayaad T. (2019). Efficiency of three mitochondrial genes in molecular identification and phylogenetic analysis of termites. Res. J. Biotechnol, 14, 10.‏
Alharbi S. M. (2019). The Impact of Temperature on the Early Stages of the Development of the Body Axis in the Model Species Astyanax mexicanus (Teleostei: Characidae).‏ DePaul University, Biological Science, Thesis degree.
Almeida C., Rijo P. & Rosado C. (2020). Bioactive compounds from Hermetia illucens larvae as natural ingredients for cosmetic application. Biomolecules, 10, 976. https://doi.org/10.3390/biom10070976
Alqarni A. S., Hannan M. A., Owayss A. A. & Engel M. S. (2011). The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): Their natural history and role in beekeeping. ZooKeys, (134), 83.‏ https://doi.org/10.3897/zookeys.134.1677
Amberg N. & Fogarassy C. (2019). Green consumer behaviour in the cosmetics market Resources, 8(3), 137. https://doi.org/10.3390/resources8030137
Asiry K. A., Huda M. N., & Mousa M. A. (2022). Abundance and population dynamics of the key insect pests and agronomic traits of tomato (Solanum lycopersicon L.) varieties under different planting densities as a sustainable pest control method. Horticulturae, 8(10), 976.‏ https://doi.org/10.3390/horticulturae8100976
Ayaad T. H., Al-Akeel R. K. & Olayan E. (2015). Isolation and characterization of midgut lectin from Aedes aegypti (L.) (Diptera: Culicidae). Brazilian Archives of Biology and Technology, 58, 905-912.‏ https://doi.org/10.1590/S1516-89132015060277
Ayieko M.A., Ogola H.J. & Ayieko I.A. (2016). Introducing rearing crickets (Gryllids) at household levels: adoption, processing and nutritional values. J. Insects Food Feed, 2, 203-211. https://doi.org/10.3920/JIFF2015.0080
Backwell L. R. & d'Errico F. (2001). Evidence of termite foraging by Swartkrans early hominids. Proc. Natl. Acad. Sci. 98, 1358–1363. https://doi.org/10.1073/pnas.98.4.1358
Banjo A. D., Lawal O. A. & Songonuga, E. A. (2006). The Nutritional Value of Fourteen Species of Edible Insects in Southwestern Nigeria. African Journal of Biotechnolog, 5(3), 298-301.
BartoLozzi L., NorBiato M. & CiaNFeroNi F. (2016). A review of geographical distribution of the stag beetles in Mediterranean countries (Coleoptera: Lucanidae). Fragmenta entomologica, 48(2), 153-168.‏ http://dx.doi.org/10.4081/fe.2016.182
Bednářová M., Borkovcová M. & Komprda T. (2014). Purine derivate content and amino acid profile in larval stages of three edible insects. Journal of the Science of Food and Agriculture, 94(1), 71-76.‏ https://doi.org/10.1002/jsfa.6198
Bednářová M., Borkovcová M., Mlček J., Rop O. & Zeman L. (2013). Edible insects-species suitable for entomophagy under condition of Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(3), 587-593. http://dx.doi.org/10.11118/actaun201361030587
Bílý S., Kubáň V., Volkovitsh M. G., & Kalashian M. Y. (2011). Order Coleoptera, Family Buprestidae. Arthropod fauna of the UAE, 4, 168-223.‏
Bogusz R., Pobiega K., Kowalczewski P. Ł., Onopiuk A., Szulc K., Wiktor A. & Nowacka M. (2024). Nutritional value and microbiological aspects of dried yellow mealworm (Tenebrio molitor L.) Larvae Pretreated with a Pulsed Electric Field. Applied Sciences, 14(3), 968.‏ https://doi.org/10.3390/app14030968
Boukid F., Sogari G.,R & Osell C.M. (2022). Edible insects as foods: mapping scientific publications and product launches in the global market. 9 (3), 353-368.http://dx.doi.org/10.3920/JIFF2022.0060
Chain X., Jiang C., Jin J., Jin Q., Akoh C. C., Wei W. & Wang X. (2024). Medium-and Long- Triacylglycerol: Preparation, Health Benefits, and Food Utilization. Annual Review of Food Science and Technology, 15.‏ https://doi.org/10.1146/annurev-food-072023-034539
Chakravorty J., Ghosh S. & Meyer-Rochow V. (2011). Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes of the state of Arunachal Pradesh (North-East India). Journal of ethnobiology and ethnomedicine. 7, 5. https://doi.org/10.1186/1746-4269-7-5
Chen X., Feng Y. & Chen Z. (2009). Common edible insects and their utilization in China. Entomological research, 39(5), 299-303. https://doi.org/10.1111/1744-7917.12449
Chen Y., Mitra A., Rahimnejad S., Chi S., Kumar V., Tan B. & Xie S. (2024). Retrospect of fish meal substitution in Pacific white shrimp (Litopenaeus vannamei) feed: Alternatives, limitations and future prospects. Reviews in Aquaculture, 16(1), 382-409.‏ doi:10.1111/raq.12843
Conway A., Jaiswal S. & Jaiswal A. K. (2024). The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods, 13(3), 387. https://doi.org/10.3390/foods13030387
Danhassan M. S., Salihu A. & Inuwa H. M. (2018). Effect of boiling on protein, mineral, dietary fibre and antinutrient compositions of Nymphaea lotus (Linn) seeds. Journal of Food Composition and analysis, 67, 184-190.‏ https://doi.org/10.1016/j.jfca.2017.12.024
Dolganyuk V., Sukhikh S., Kalashnikova O., Ivanova S., Kashirskikh E., Prosekov A., & Babich O. (2023). Food Proteins: Potential Resources. Sustainability, 15(7), 5863.‏ https://doi.org/10.3390/su15075863
Dos Santos Aguilar J.G. (2021). An overview of lipids from insects. Biocatal. Agric. Biotechnol., 33. https://doi.org/10.1016/j.bcab.2021.101967
Dunkel F. V. & Van Huis A. (2024). Edible Insects: a Neglected and Promising Food Source. In Sustainable Protein Sources, 515-537. Academic Press.‏ https://doi.org/10.1016/B978-0-12-802778-3.00021-4
Ekpo K. E., Onigbinde A. O. & Asia I. O. (2009). Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. African Journal of Pharmacy and Pharmacology, 3(2), 51-57
Feng Y., Chen X., Wang S., Ye S. & Chen Y. (2000). The common edible insects of Hemiptera and their nutritive value. Forest Research 13, 608–612.
Fiaz S., Noor M. A. & Aldosri F. O. (2018). Achieving food security in the Kingdom of Saudi Arabia through innovation: Potential role of agricultural extension. Journal of Saudi Society of Agricultural Sciences, 17(4), 365-375. https://doi.org/10.1016/j.jssas.2016.09.001
Fiebelkorn F., Puchert N. & Dossey A. T. (2020). An exercise on data-based decision making: Comparing the sustainability of meat & edible insects. The American Biology Teacher, 82(8), 522-528.‏ https://doi.org/10.1525/abt.2020.82.8.522
Finke M. D., & Oonincx, D. (2023). Insects as food for insectivores. In Mass production of beneficial organisms. Academic Press, ‏511-540. https://doi.org/10.1016/B978-0-12-391453-8.00017-0
Franco A., Salvia R., Scieuzo C., Schmitt E., Russo A., & Falabella P. (2021). Lipids from insects in cosmetics and for personal care products. Insects, 13, 41. https://doi.org/10.3390/insects13010041
García-Vaquero M. & García, C. Á. (2024). Nutritional value of insects and derived ingredients. Insects as Food and Food Ingredients. Academic Press, ‏31-45. https://doi.org/10.1080/10408398.2023.2223644
Gericke M., Amaral A. J., Budtova T., De Wever P., Groth T., Heinze T. & Fardim P. (2024). The European Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources. Carbohydrate Polymers, 326.‏ https://doi.org/10.1016/j.carbpol.2023.121633
Gharsan F. N., & Alghamdi S. Q. (2024). First report of the morphological and molecular characterization of Pseudolynchia canariensis (Diptera: Hippoboscidae) from Al-Baha region, Saudi Arabia. Veterinary Parasitology: Regional Studies and Reports, 100999.
Ghoneim K. (2019). Characterization of Qualitative and Quantitative Haemogram Parameters in Insects: Current Concepts and Future Prospects. Egyptian Academic Journal of Biological Sciences. A, Entomology, 12(1), 9-63.‏ https://doi.org/10.21608/eajbsa.2019.25088
Glazer I., Mendel Z. & Ment D. (2023). Biopesticides in Israel: exploration, development, and applications. In Development and Commercialization of Biopesticides. Academic Press,‏ 257-295. https://doi.org/10.1016/B978-0-323-95290-3.00014-5
Gorochov A. V. (1993). Grylloidea (Orthoptera) of Saudi Arabia and adjacent countries. Fauna of Saudi Arabia, 13: 79-97.‏
Hăbeanu M., Gheorghe A. & Mihalcea T. (2023). Nutritional value of silkworm pupae (Bombyx mori) with emphases on fatty acids profile and their potential applications for humans and animals. Insects, 14(3), 254.‏ https://doi.org/10.3390/insects14030254
Hahn T., Tafi E., Paul A., Salvia R., Falabella P. & Zibek S. (2020). Current state of chitin purification and chitosan production from insects. J. Appl. Chem. Biotechnol, 95. https://doi.org/10.1002/jctb.6533
Hannan M. A., Alqarni A. S., Owayss A. A. & Engel M. S. (2012). The large carpenter bees of central Saudi Arabia, with notes on the biology of Xylocopa sulcatipes Maa (Hymenoptera, Apidae, Xylocopinae). ZooKeys, 201,1.‏ https://doi.org/10.3897/zookeys.201.3246
Hawkey K. J., Lopez-Viso C., Brameld J. M., Parr T. & Salter A. M. (2021). Insects: a potential source of protein and other nutrients for feed and food. Ann. Rev. Anim. Biosci., 9, 333-354. https://doi.org/10.1146/annurev-animal-021419-083930
Hossain M. S., Small B. C. & Hardy, R. (2023). Insect lipid in fish nutrition: Recent knowledge and future application in aquaculture. Reviews in Aquaculture, 15(4) http://dx.doi.org/10.1111/raq.12810
Hoyt C. P., & Osborne G. O. (1970). Purines in the excreta of Dermestes maculatus (Coleoptera: Dermestidae). Ann Entomol Soc Am 63, 1198–1198 https://doi.org/10.1093/aesa/63.4.1198
Huis A.V, Itterbeeck J.V, & Klunder H. (2013). Edible insects: future prospects for food and feed security, FAO, Rome.
Husain M., Rasool K. G., Sharaf M. R., Tufail M., Sutanto K. D., Al-Waneen W. S., & Aldawood A. S. (2023). Mitochondrial COI based molecular identification of harvester termite, Anacanthotermes ochraceus (Burmeister, 1839) in Riyadh Region, the Kingdom of Saudi Arabia. Journal of King Saud University-Science, 102782.‏
Ivanišová E., Rajnoha M., Harangozo Ľ., Kunecová D., Čech M., Gabríny L. & Pietrzak-Fiećko R. (2023). Physicochemical, Nutritional, Antioxidant, and Sensory Properties of Crackers Supplemented with Edible Insects. Applied Sciences, 13(21), 11911.‏ https://doi.org/10.3390/app132111911
Kinyuru J. N., Kenji G. M. & Njoroge M. S. (2009). Process development, nutrition and sensory qualities of wheat buns enriched with edible termites (Macrotermes subhyalinus) from Lake Victoria region, Kenya. African Journal of Food, Agriculture, Nutrition and Development 9, 1739–1750.
Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M. & Nout, M. R. (2012). Microbiological aspects of processing and storage of edible insects. Food control, 26(2), 628-631.
Kolobe, S. D., Manyelo, T. G., Malematja, E., Sebola, N. A. & Mabelebele, M. (2023). Fats and major fatty acids present in edible insects utilised as food and livestock feed. Veterinary and Animal Science, 100312.‏
Kouřimská, L., & Adámková, A. 2016. Nutritional and sensory quality of edible insects. NFS Journal, 4, 22-26. https://doi.org/10.1016/j.nfs.2016.07.001
Kumareswaran, K. & Jayasinghe, G.Y. (2022). Systematic review on ensuring the global food security and covid-19 pandemic resilient food systems: towards accomplishing sustainable development goals targets. Discov Sustain 3, 29 https://doi.org/10.1007/s43621-022-00096-5
Lange K. W. & Nakamura Y. (2021). Edible insects as future food: chances and challenges. J. Future Foods 1, 38–46. https://doi.org/10.1016/j.jfutfo.2021.10.001
Mabelebele M., Kolobe S. D., Malematja E., Sebola N. A. & Manyelo T. G. (2023). A comprehensive review of the importance of selected trace elements present in edible insects. Biological Trace Element Research, 201(7), 3520-3527.‏ https://doi.org/10.1007/s12011-022-03423-z
Mancini S., Sogari G., Espinosa S. D, Menozzi D., Paci G. & Moruzzo R. (2022). Exploring the future of edible insects in Europe. Foods, 11, 455. https://doi.org/10.3390/foods11030455
Mashaly A., Sharaf M. R., Al-Subeai M., Al-Mekhlafi F., Aldawood A. & Anderson, G. (2018). Ants (Hymenoptera: Formicidae) attracted to rabbit carcasses in three different habitats. Sociobiology, 65(3), 433-440.‏ https://doi.org/10.13102/sociobiology.v65i3.2895
Maxwell-Darling R. C. (1937). The outbreak areas of the desert locust (Schistocerca gregaria, Forsk.) in Arabia. Bulletin of Entomological Research, 28(4), 605-618.‏ https://doi.org/10.1017/S0007485300038566
Melgar‐Lalanne G., Hernández‐Álvarez A. J. & Salinas‐Castro A. (2019). Edible insects processing: Traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1166-1191. https://doi.org/10.1111/1541-4337.12463
Mitsuhashi, J. (2016). Edible insects of the world. CRC press.
Mudalungu C. M., Mokaya H. O. & Tanga C. M. (2023). Beneficial sterols in selected edible insects and their associated antibacterial activities. Scientific Reports, 13(1), 10786.‏ https://doi.org/10.1038/s41598-023-37905-4
Nelson WA. (1958). Purine excretion by the sheep ked, Melophagus ovinus (L.). Nature 182, 115–115 https://doi.org/10.1038/182115a0
Onzikou J. M., Memba F., Mvoula-Tsieri M., Diabangonaya-Batela B., Malela K. E., Kimbonguila A., Ndangui C. B., Pambou-Tobi N. P., Silou T. & Desobry S. (2010). Characterization and nutritional potentials of Rhyncophorus phoenicis larva consumed in Congo-Brazzaville. Research Journal of Biological Sciences 2, 189–194.
Pal P. & Roy S. (2014). Edible insects: future of human food–a review. International Letters of Natural Sciences, 21. http://dx.doi.org/10.18052/www.scipress.com/ILNS. 26.1
Patil Y. P., Mohite S. D., Giri A. P. & Joshi R. S. (2023). Insect metabolome: New paradigm of novel metabolites discovery and its potential applications. New Horizons in Natural Compound Research, 293-314. Academic Press.‏ https://doi.org/10.1016/B978-0-443-15232-0.00007-2
Prasad M. (1996). An account of the Odonata of Maharashtra state, India. Records of the Zoological Survey of India, 95(3-4), 305-327.‏ https://doi.org/10.26515/rzsi/v95/i3-4/1996/160305
Premalatha M., Abbasi T. & Abbasi T. (2011). Energy-efficient food production to reduce global warming and ecodegradation: the use of edible insects. Renew. Sust. Energ. Rev., 15, 4357-4360. https://doi.org/10.1016/j.rser.2011.07.115
Promwee A., Chinarak K., Panpipat W., Panya A., Phonsatta N., Harcet M. & Chaijan M. (2023). Balancing the Growth Performance and Nutritional Value of Edible Farm-Raised Sago Palm Weevil (Rhynchophorus ferregineus) Larvae by Feeding Various Plant Supplemented-Sago Palm Trunk Diets. Foods, 12(18), 3474. https://doi.org/10.3390/foods12183474
Rothman J. M., Raubenheimer D., Bryer M. A. H., Takahashi M. & Gilbert C. C. (2014). Nutritional contributions of insects to primate diets: implications for primate evolution. J. Hum. Evol, 71, 59–69. https://doi.org/10.1016/j.jhevol.2014.02.016
Sabolová M., Adámková A., Kouřimská L., Chrpová D. & Pánek J. (2016). Minor lipophilic compounds in edible insects. Potravinarstvo, 10(1).‏ http://dx.doi.org/10.5219/605
Sabolová M., Kulma M., Škvorová P., Veselá K., Kurečka M. & Kouřimská L. (2023). Investigating purine and uric acid contents of various development stages of artificially reared edible insects. Journal of Insects as Food and Feed, 9(1), 77-85. https://doi.org/10.3920/JIFF2022.0011
Samraoui B., Boudot J. P., Ferreira S., Riservato E., Jovic M., Kalkman V. J. & Schneider W. (2010). The status and distribution of dragonflies. The status and distribution of freshwater biodiversity in Northern Africa, 13, 51-70.‏
Scaffardi L. & Formici G. (2022). (Eds.), Novel Foods and Edible Insects in the European Union. An Interdisciplinary Analysis, Springer Nature
Schneider W., & Krupp F. (1993). Dragonfly Records from Saudi Arabia, with an Annotated Checklist of the Species.‏
Seizmair M. (2023). Contribution to the Knowledge of the Afrotropical Spilomelinae (Lepidoptera, Crambidae): A New Species from Saudi Arabia, New Combinations and Distributional Updates. Advances in Entomology, 11(3), 223-238.‏
Sharawi S. E. (2023). Morphological and molecular identification of novel green peach aphids (Myzus persicae)(Hemiptera: Aphididae) and Their Microbiome Diversity in Taif Governorate. Indian Journal of Animal Research, 57(9), 1177-1185.‏
Siddiqui S. A., Fernando I., Saraswati Y. R., Rahayu T., Harahap I. A., Yao Q. & Shah M. A. (2023). Termites as human foods—A comprehensive review. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/1541-4337.13199
Siddiqui S. A., Zhao T., Fitriani A., Rahmadhia S. N., Alirezalu K. & Fernando I. (2024). Acheta domesticus (house cricket) as human foods ‐An approval of the European Commission‐A systematic review. Food Frontiers. https://doi.org/10.1002/fft2.358
Singh D., Kumar R., Singh S. & Ramniwas S. (Eds.). (2023). 3D Printing of Sustainable Insect Materials. Springer Nature.‏
Siulapwa N., Mwambungu A., Lungu E. & Sichilima W. (2014). Nutritional value of four common edible insects in Zambia. Int. J. Sci. Res, 3, 876-884.‏
Sun-Waterhouse D., Waterhouse G. I., You L., Zhang J., Liu Y., Ma L. & Dong Y. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Research International, 89, 129-151. https://doi.org/10.1016/j.foodres.2016.10.001
Tselikh E. V. (2016). New data on the pteromalid wasps (Hymenoptera, Chalcidoidea: Pteromalidae) of the Russian Far East. Entomological Review, 96, 175-190.‏
Tzompa-Sosa D. A., Yi L., van Valenberg H. J., van Boekel M. A. & Lakemond C. M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087-1094. https://doi.org/10.1016/j.foodres.2014.05.052
Tzompa-Sosa D.A., Dewettinck K., Gellynck X. & Schouteten J.J. (2021). Replacing vegetable oil by insect oil in food products: effect of deodorization on the sensory evaluation. Food Res. Int., 141, 110140. https://doi.org/10.1016/j.foodres.2021.110140
United Nations (2015). World population prospects: The 2015 revision, key findings and advance tables, 2015. http://esa.un.org/unpd/wpp/Publications/Files/Key_Find ings_WPP_2015.pdf (accessed 19 August 2021).
Van Huis A., Van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G. & Vantomme P. (2013). Edible insects: future prospects for food and feed security (No. 171). Food and agriculture organization of the United Nations.‏ https://www.fao.org/3/i3253e/i3253e.pdf
Vauterin A., Steiner B., Sillman J. & Kahiluoto H. (2021). The potential of insect protein to reduce food-based carbon footprints in Europe: the case of broiler meat production. J. Clean. Prod., 320, Article 128799. https://doi.org/10.1016/j.jclepro.2021.128799
Waldhauser M., Vierstraete A., & Schneider T. (2023). Records of little-known Odonata from south-western Saudi Arabia. Notulae odonatologicae, 10(1), 17-29.‏
Wang Y., Shu Q., Gu H., Feng P., Dai M., Zhu Q. & Li B. (2023). Effects of different diets on the growth and development of young silkworms. Journal of Asia-Pacific Entomology, 26(4), 102134.‏ https://doi.org/10.1016/j.aspen.2023.102134
Worldometers (2022). Saudi Arabia Population (Live). Retrieved from https://www.worldometers.info/ world-population/saudi-arabia-population
Xiaoming C., Ying F., Hong Z. & Zhiyong C. (2010). Review of the nutritive value of edible insects. Forest insects as food: humans bite back, 85.
Yaman I. (2009). Orthoptera of the Central Province of Saudi Arabia. Zeitschrift für Angewandte Entomologie. 70. 88 - 92. 10.1111/j.1439-0418. 1972.tb02153.x.
Yeruva T., Jayaram H., Aurade R., Shunmugam M. M., Shinde V. S., Venkatesharao S. R. B., & Azhiyakathu M. J. (2023). Profiling of nutrients and bioactive compounds in the pupae of silkworm, Bombyx mori. Food Chemistry Advances, 3, 100382.‏ https://doi.org/10.1016/j.focha.2 023.100382
Zeya S. B., Ahmad S. K., Anwar P. T., & Khan F. R. (2024). A new species and new records of the family Mymaridae (Hymenoptera: Chalcidoidea) from Saudi Arabia. Zoology in the Middle East, 1-12.‏
Zhang W., Jia Y., Guo C., Devahastin S., Hu X. & Yi J. (2024). Effect of compositions and physical properties on 3D printability of gels from selected commercial edible insects: Role of protein and chitin. Food Chemistry, 433, 137349.‏ https://doi.org/10.1016/j.foodchem.2023.137349
Zou X., Liu M., Li X., Pan F., Wu X., Fang X. & Tian W. (2024). Applications of insect nutrition resources in animal production. Journal of Agriculture and Food Research, 100966.
Section
Research Articles

How to Cite

Exploring the various orders of edible insects in the Kingdom of Saudi Arabia as a safe and sustainable food alternative: A comprehensive review. (2024). Journal of Applied and Natural Science, 16(4), 1393-1401. https://doi.org/10.31018/jans.v16i4.5380