Mamta Sawariya Neha Yadav Ajay Kumar Himanshu Mehra Naveen Kumar Sunder Singh Arya


Chickpea (Cicer arietinum), the 2nd most important legume after dry beans, known for its protein content, is an important crop agronomically as well as economically. The present study aimed to determine the effect of foliar application of spermidine (spd) on various aspects of chickpea genotypes under salt stress. The chickpea genotypes were cultivated under 4 and 8 dSm-1 Cl- dominated salinity followed by the spermidine application of 0.5 and 1.0 mM. Salinity stress inhibited the plant height and root length, reducing plant biomass (fresh and dry weight). Furthermore, it also decreased the chlorophyll and nitrogen content of the plant. Results obtained from spermidine (spd) application indicated that both concentrations of spermidine are good in enhancing the tolerance in chickpea genotypes against salt stress. Spermidine application increased the plant's height as well as biomass. It also enhanced the chlorophyll content (32.93%), increasing the Nitrogen Balance Index (77.37%) at 1.0 mM.It further increased the flavonoid and anthocyanin content in plant leaf. In addition, the application of spermidine retained more moisture (25.81%) and increased seed fiber (13.30%) in all chickpea genotypes at 1.0 mM. It reduces the Cl- ion accumulation and maintains the ionic balance in chickpea seeds. The effect of spermidine application (0.5 and 1.0mM) was more pronounced, but 1.0 mM had a more positive effect in salt-sensitive chickpea genotypes.





Anthocyanin, Chickpea, Flavonoid, Nitrogen Balance index, Salinity, Spermidine

Abd-Alla, M. H., Nafady, N. A., Bashandy, S. R. & Hassan, A. A. (2019). Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere, 10, 100148 https://doi.org/10.1016/j.rhisph.2019.100148
Ali, S., Ali, U., Khan, W. M., Ali, K., Khan, M. S. & Shuaib, M. (2017). Effect of salt stress on the biochemical characteristics of selected wheat varieties. Pure and Applied Biology (PAB), 6(2), 691-700. http://dx.doi.org/10.19045/bspab.2017.60073
Al-Mushhin, A. A. (2022). Interactive effect of potassium and spermidine protects growth, photosynthesis and chlorophyll biosynthesis in Vigna angularis from salinity induced damage by up-regulating the tolerance mechanisms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12607-12607. https://doi.org/10.15835/nbha50112607
Amin, A. A., Gharib, F. A., Abouziena, H. F. & Dawood, M. G. (2013). Role of indole-3-butyric acid or/and putrescine in improving productivity of chickpea (Cicer arientinum L.) plants. Pakistan Journal of Biological Sciences: PJBS, 16(24), 1894-1903. https://doi.org/10.3923/pjbs.2013.1894.1903
Ashraf, M., Shahzad, S. M., Imtiaz, M. & Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants–focusing on the activities of nitrogen metabolizing enzymes: A review. Journal of Plant Nutrition, 41(8), 1065-1081. https://doi.org10.1080/01904167.2018.1431670
Atieno, J., Li, Y., Langridge, P., Dowling, K., Brien, C., Berger, B., Varshney, R.K. & Sutton, T. (2017). Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Scientific Reports, 7(1), p.1300 https://doi.org/10.1038/s41598-017-01211-7
Borghesi, E., González-Miret, M. L., Escudero-Gilete, M. L., Malorgio, F., Heredia, F. J. & Meléndez-Martínez, A. J. (2011). Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. Journal of Agricultural and Food Chemistry, 59(21), 11676-11682. https://doi.org/10.1021/jf2021623
BOUABDALLAH, M., MAHMOUDI, H., GHNAYA, T., HANNACHI, H., TAHERI, A., OUERGHI, Z. & CHAFFEI-HAOUARI, C. H. I. R. A. Z. (2022). Spermidine as an elevator of salinity induced stress on two varieties of Triticum durum DESF.(KARIM AND RAZZEK). Pak. J. Bot, 54(3), 771-779. DOI: http://dx.doi.org/10.30848/PJB2022-3(3)
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B. & Latouche, G. (2012). A new optical leaf‐clip meter for simultaneous non‐destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia plantarum, 146(3), 251-260 https://doi.org/10.1111/j.1399-3054.2012.01639.x
Dadasoglu, E., Turan, M., Ekinci, M., Argin, S. & Yildirim, E. (2022). Alleviation mechanism of melatonin in chickpea (Cicer arietinum L.) under the salt stress conditions. Horticulturae, 8(11), 1066.  https://doi.org/10.3390/horticulturae8111066
ElSayed, A. I., Mohamed, A. H., Rafudeen, M. S., Omar, A. A., Awad, M. F. & Mansour, E. (2022). Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system and upregulation of calvin cycle-related genes in rapeseed (Brassica napus L.). Saudi Journal of Biological Sciences, 29(5), 3675-3686. https://doi.org/10.1016/j.sjbs.2022.02.053
Eryılmaz, F. (2006). The relationships between salt stress and anthocyanin content in higher plants. Biotechnology & Biotechnological Equipment, 20(1),47-52.https://doi.org/10.1080/13102818. 2006.1081 7303
Fan, K., Li, F., Chen, X., Li, Z. & Mulla, D. J. (2022). Nitrogen Balance Index Prediction of Winter Wheat by Canopy Hyperspectral Transformation and Machine Learning. Remote Sensing, 14(14), 3504.  https://doi.org/10.3390/rs14143504
Food and Agriculture Organization (FAO) (2020). FAOSTAT Statistical Database of the United Nation Food and Agriculture Organization (FAO) Statistical Division. Rome. http://www.fao.org/faostat/en/#data.
Garg, N. & Singla, R. (2009). Variability in the response of chickpea cultivars to short-term salinity, in terms of water retention capacity, membrane permeability, and osmo-protection. Turkish Journal of Agriculture and Forestry, 33(1), 57-63 10.3906/tar-0712-41
Genzel, F., Dicke, M. D., Junker-Frohn, L. V., Neuwohner, A., Thiele, B., Putz, A., Usadel, B., Wormit, A. & Wiese-Klinkenberg, A. (2021). Impact of moderate cold and salt stress on the accumulation of antioxidant flavonoids in the leaves of two capsicum cultivars. Journal of agricultural and food chemistry, 69(23),6431-6443. https://doi.org/10.1021/acs.jafc.1c00908
Hai, X., Mi, J., Zhao, B., Zhang, B., Zhao, Z. & Liu, J. (2022). Foliar application of spermidine reduced the negative effects of salt stress on oat seedlings. Frontiers in Plant Science, 13, 846280.  https://doi.org/10.3389/fpls.2022.846280
Hasana, R., & Miyake, H. (2017). Salinity stress alters nutrient uptake and causes the damage of root and leaf anatomy in maize. KnE Life Sciences, 219-225. https://doi.org/10.18502/kls.v3i4.708
Hu, L., Xiang, L., Li, S., Zou, Z. & Hu, X. H. (2016). Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity–alkalinity stress. Physiologia Plantarum, 156(4), 468-477 https://doi.org/10.1111/ppl.12398
Jeon, D., Lee, S., Choi, S., Seo, S. & Kim, C. (2020). Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L. Korean Journal of Agricultural Science, 47(1), 105-117. https://doi.org/10.7744/kjoas.20200003
Kiani, R., Arzani, A. & Mirmohammady Maibody, S. A. M. (2021). Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Frontiers in plant science, 12, 646221. https://doi.org/10.3389/fpls.2021.646221
Kaur, G., Sanwal, S. K., Sehrawat, N., Kumar, A., Kumar, N. & Mann, A. (2022a). Identification of salt tolerant chickpea genotypes based on yield and salinity indices. Legume Research-An International Journal, 45(11), 1381-1387. https://doi.org/10.18805/LR-4519
Kaur, G., Sanwal, S.K., Sehrawat, N., Kumar, A., Kumar, N. & Mann, A. (2021). Assessing the effect of salinity stress on root and shoot physiology of chickpea genotypes using hydroponic technique. Indian Journal of Genetics and Plant Breeding, 81, 92–95 https://doi.org/10.31742/IJGPB.81.4.12
Kaur, G., Sanwal, S.K., Sehrawat, N., Kumar, A., Kumar, N. & Mann, A. (2022b). Getting to the roots of Cicer arietinum L.(chickpea) to study the effect of salinity on morpho-physiological, biochemical and molecular traits. Saudi Journal of Biological Sciences, 103464 https://doi.org/10.1016/j.sjbs.2022.103464
Ladha, J. K., Peoples, M. B., Reddy, P. M., Biswas, J. C., Bennett, A., Jat, M. L. & Krupnik, T. J. (2022). Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research, 283, 108541 https://doi.org/10.1016/j.fcr.2022.108541
Mamta, Kumar, A., Kumar N., Kumar, S., Monika, Heena & Arya, S.S. (2020). Salinity: Distribution and Impacts on Plants In: Management of Abiotic Stress in Crop Plants (pp 41-74) IP Innovative Publication Pvt. Ltd. New Delhi
Mann, A., Kaur, G., Kumar, A., Sanwal, S.K., Singh, J. & Sharma, P.C. (2019). Physiological response of chickpea (Cicer arietinum L.) at early seedling stage under salt stress conditions. Legume Research-An International Journal, 42, 625–632 DOI: 10.18805/LR-4059
Mansour, M. M. F. (2000). Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia plantarum, 43, 491-500. https://doi.org/10.1023/A:1002873531707
Nahar, K., Hasanuzzaman, M., Rahman, A., Alam, M., Mahmud, J. A., Suzuki, T. & Fujita, M. (2016). Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Frontiers in Plant Science, 7, 1104. https://doi.org/10.3389/fpls.2016.01104
Raziq, A., Din, A. M. U., Anwar, S., Wang, Y., Jahan, M. S., He, M., Ling, C.G., Shu, S. & Guo, S. (2022). Exogenous spermidine modulates polyamine metabolism and improves stress responsive mechanisms to protect tomato seedlings against salt stress. Plant Physiology and Biochemistry, 187, 1-10. https://doi.org/10.1016/j.plaphy.2022.07.005
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P. & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment, 764, 144164. https://doi.org/10.1016/j.scitotenv.2020.144164
Saleethong, P., Sanitchon, J., Kong-Ngern, K. & Theerakulpisut, P. (2011). Pretreatment with spermidine reverses inhibitory effects of salt stress in two rice (Oryza sativa L.) cultivars differing in salinity tolerance. Asian Journal of Plant Sciences, 10(4), 245-254. https://doi.org https://doi.org/10.3923/ajps.2011.245.254
Santos Filho, F. B. D., Silva, T. I. D., Dias, M. G. & Grossi, J. A. S. (2022). Polyamines mitigate the harmful effects of salt stress on the growth and gas exchange of nasturtium. Ciência e Agrotecnologia, 46, e000722.  https://doi.org/10.1590/1413-7054202246000722 
Sarker, U., Islam, M. T. & Oba, S. (2018). Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS One, 13(11), e0206388. https://doi.org/10.1371/journal.pone.0206388
Shanko, D., Jateni, G. & Debela, A. (2017). Effects of salinity on chickpea (Cicer arietinum L.) landraces during germination stage. Biochem. Mol. Biol. J, 3, 214-219. https://doi.org 10.21767/2471-8084.100037
Shibaeva, T. G., Mamaev, A. V. & Sherudilo, E. G. (2020). Evaluation of a SPAD-502 plus chlorophyll meter to estimate chlorophyll content in leaves with interveinal chlorosis. Russian Journal of Plant Physiology, 67, 690-696 https://doi.org 10.1134/S1024437200401604
Singh, J., Singh, V. & Sharma, P. C. (2018). Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiology and molecular biology of plants, 24, 441-453 https://doi.org 10.1007/s12298-018-0517-4
Tomar, M., Bhardwaj, R., Kumar, M., Singh, S. P., Krishnan, V., Kansal, R., Verma, R., Yadav, V.K., Ahlawat, S. P., Rana, J. C. & Satyavathi, C.T. (2021). Development of NIR spectroscopy based prediction models for nutritional profiling of pearl millet (Pennisetum glaucum (L.)) R. Br: A chemometrics approach. LWT, 149, 111813. https://doi.org/10.1016/j.lwt.2021.111813
Zhou, Y., Tang, N., Huang, L., Zhao, Y., Tang, X. & Wang, K. (2018). Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq. International journal of molecular sciences, 19(1), 252. https://doi.org/10.3390/ijms19010252
Research Articles

How to Cite

Enhancing salinity stress tolerance in chickpea (Cicer arietinum L.) genotypes through foliar application of spermidine. (2023). Journal of Applied and Natural Science, 15(4), 1750-1759. https://doi.org/10.31018/jans.v15i4.5230