Mujiyo Sefina Fauzia Oryza Suntoro Ganjar Herdiansyah


Continuous use of chemical fertilizers and farming practices in rice fields would reduce nutrient availability and biota population in the soil. Because soil biological linkages are sensitive to changes in soil function, changes in fauna and microbial populations can affect soil fertility. This study aimed to identify the condition of soil fertility and soil biota under various farming systems, namely organic, semi-organic, and conventional, and find the indicators that determine soil fertility index (SFI) in the research area. This research is a survey with the sampling method was purposive on the Land Mapping Unit (LMU) overlaid with thematic maps (land use, soil type, slope, and rainfall). The method analysis of SFI using Principal Component Analysis (PCA) and scoring methods were used for the effect of farming systems using One-way, continued by DMRT, and determinant factor using Pearson’s. Correlation. The results illustrated that soil fertility was a moderate category. The highest SFI was in organic rice fields (0.69), then in semi-organic (0.62), and the lowest fertility was in conventional (0.59). Organic farming also showed the best soil biota conditions (0.27 individuals/liter of earthworms and 0.755 µ/g of microbial C biomass) compared to semi-organic (0.15 individuals/liter, 0.508 µ/g microbial C biomass) and conventional farming (0.11 individuals/liter, microbial biomass C 0.325 µ/g). Soil fertility and soil biota are positively correlated, meaning that the higher the soil fertility, the higher the density of soil biota. The soil indicators most determining fertility are total N, P-available, K-available, CEC, and organic C.





Determining factors, Earthworm, Microbial C biomass, Plant nutrient, Soil ecosystem

Abdel Rahman, M. A. E., Metwaly, M. M., Afifi, A. A., D’Antonio, P. & Scopa, A. (2022). Assessment of soil fertility status under soil degradation rate using geomatics in West Nile Delta. Land, 11(8), 1–23. https://doi.org/10.3390/land11081256.
Ahmed, N. & Al-Mutairi, K. A. (2022). Earthworms effect on microbial population and soil fertility as well as their interaction with agriculture practices. Sustainability (Switzerland), 14(13), 1–17. https://doi.org/10.3390/su14137803.
Ansari, A. A. & Ismail, S. A. (2012). Role of earthworms in vermitechnology. Journal of Agricultural Technology, 8(2), 403–415. https://pdfs.semanticscholar.org/ 44c3/437 da abd421112468ab1c79bc1bc69c4bd9b.pdf.
Aponte, C., García, L. V. & Marañón, T. (2013). Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. Forest Ecology and Management, 309, 36–46. https://doi.org/10.1016/j.foreco.2013.05.035.
Bagherzadeh, A., Gholizadeh, A. & Keshavarzi, A. (2018). Assessment of soil fertility index for potato production using integrated fuzzy and AHP approaches, Northeast of Iran. Eurasian Journal of Soil Science, 7(3), 203–212. https://doi.org/10.18393/ejss.399775.
Bahadur, I., Meena, V. S. & Kumar, S. (2014). Importance and application of potassic biofertilizer in Indian agriculture. International Research Journal of Biological Sciences, 3(12), 80–85. www.isca.me.
Bhatt, M.K., Labanya, R. & Joshi, H.C. (2019). Influence of long-term chemical fertilizers and organic manures on soil fertility-a review. Universal Journal of Agricultural Research, 7(5), 177-188. https://doi.org/10.13189/ujar.2019.070502
Bonanomi, G., Cesarano, G., Gaglione, S. A., Ippolito, F., Sarker, T. & Rao, M. A. (2017). Soil fertility promotes decomposition rate of nutrient poor, but not nutrient rich litter through nitrogen transfer. Plant and Soil, 412, 397–411. https://doi.org/10.1007/s11104-016-3072-1.
Cai, A., Xu, M., Wang, B., Zhang, W., Liang, G., Hou, E. & Luo, Y. (2019). Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189, 168–175. https://doi.org/10.1016/j.still.2018.12.022.
Capowiez, Y., Gilbert, F., Vallat, A., Poggiale, J. C. & Bonzom, J. M. (2021). Depth distribution of soil organic matter and burrowing activity of earthworms-mesocosm study using x-ray tomography and luminophores. Biology and Fertility of Soils, 57(3), 337–346. https://doi.org/10.1007/s00374-020-01536-y.
Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. International Journal of Scientific and Research Publications, 3(1), 2250–3153. www.ijsrp.org.
Chauhan, R. P. (2014). Role of earthworms in soil fertility and factors affecting their population dynamics: a review. International Journal of Research, 1(6), 642–649. www.ijsr.net.
Dai, H., Chen, Y., Yang, X., Cui, J. & Sui, P. (2017). The effect of different organic materials amendment on soil bacteria communities in barren sandy loam soil. Environmental Science and Pollution Research, 24(30), 24019–24028. https://doi.org/10.1007/s11356-017-0031-1.
Dobson, A. M., Blossey, B. & Richardson, J. B. (2017). Invasive earthworms change nutrient availability and uptake by forest understory plants. Plant and Soil, 421, 175–190. https://doi.org/10.1007/s11104-017-3412-9.
dos Santos, M. S., Sanglard, L. M. V. P., Barbosa, M. L., Namorato, F. A., de Melo, D. C., Franco, W. C. G., Pérez-Molina, J. P., Martins, S. C. V. & DaMatta, F. M. (2020). Silicon nutrition mitigates the negative impacts of iron toxicity on rice photosynthesis and grain yield. Ecotoxicology and Environmental Safety, 189, 1–8. https://doi.org/10.1016/j.ecoenv.2019.110008.
Fusaro, S., Gavinelli, F., Lazzarini, F. & Paoletti, M. G. (2018). Soil biological quality index based on earthworms (QBS-e): a new way to use earthworms as bioindicators in agroecosystems. Ecological Indicators, 93, 1276–1292. https://doi.org/10.1016/j.ecolind.2018.06.007.
Gougoulias, C., Joaanna, M.C. & Liz, J. S. (2014). The role of soil microbes in the global carbon cycle tracking the below‐ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal Science Food Agric, 94, 2362–2371. https://doi.org/10.1002/jsfa.6577.
Groffman, P. M., Fahey, T. J., Fisk, M. C., Yavitt, J. B., Sherman, R. E., Bohlen, P. J. & Maerz, J. C. (2015). Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in Northern Hardwood forests. Soil Biology and Biochemistry, 87, 51–58. https://doi.org/10.1016/j.soilbio.2015.03.025.
Gundale, M. J., Kardol, P., Nilsson, M. C., Nilsson, U., Lucas, R. W. & Wardle, D. A. (2014). Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytologist, 202(2), 415–421. https://doi.org/10.1111/nph.12699.
Han, J., Dong, Y. & Zhang, M. (2021). Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Applied Soil Ecology, 165(26), 1–11. https://doi.org/10.1016/j.apsoil.2021.103966.
Han, X., Li, Y., Du, X., Li, Y., Wang, Z., Jiang, S. & Li, Q. (2020). Effect of grassland degradation on soil quality and soil biotic community in a semi-arid temperate steppe. Ecological Processes, 63(9), 1–11. https://doi.org/10.1186/s13717-020-00256-3.
He, M., Xiong, X., Wang, L., Hou, D., Bolan, N. S., Ok, Y. S., Rinklebe, J. & Tsang, D. C. W. (2021). A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials, 414, 1–18. https://doi.org/10.1016/j.jhazmat.2021.125378.
Herencia, J. F. & Maqueda, C. (2016). Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables. Journal of Agricultural Science, 154(8), 1343–1361. https://doi.org/10.1017/S0021859615001136.
Hoeffner, K., Santonja, M., Monard, C., Barbe, L., Moing, M. L.E. & Cluzeau, D. (2021). Soil properties, grassland management, and landscape diversity drive the assembly of earthworm communities in temperate grasslands. Pedosphere, 31(3), 375–383. https://doi.org/10.1016/S1002-0160(20)60020-0.
Ibukunoluwa, M. E. (2015). Use of different organic fertilizers on soil fertility improvement, growth and head yield parameters of cabbage (Brassica oleraceae L). International Journal of Recycling of Organic Waste in Agriculture, 4(4), 291–298. https://doi.org/10.1007/s40093-015-0108-0.
Ilmiah, H. H., Sulistyaningsih, E. & Joko, T. (2021). Fruit morphology, antioxidant activity, total phenolic and flavonoid contents of Salacca zalacca (Gaertner) Voss by applications of goat manures and bacillus velezensis B-27. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 270-282. https://doi.org/10.20961/carakatani.v36i2.43798.
Indonesia Center for Agricultural Land Resources Research and Development. (2007)
Indonesia Center for Agricultural Land Resources Research and Development. (2009)
Iqbal, A., Tang, X., Ali, I., Yuan, P., Khan, R., Khan, Z., Adnan, M., Wei, S. & Jiang, L. (2023). Integrating low levels of organic fertilizer improves soil fertility and rice yields in paddy fields by influencing microbial communities without increasing CH4 emissions. Applied Soil Ecology, 189, 1–11. https://doi.org/10.1016/j.apsoil.2023.104951.
Kooch, Y., Ehsani, S. & Akbarinia, M. (2020). Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil and Tillage Research, 200, 1–11. https://doi.org/10.1016/j.still.2020.104621.
Kuppusamy, S., Yoon, Y. E., Kim, S. Y., Kim, J. H. & Lee, Y. B. (2017). Long-term inorganic fertilization effect on the micronutrient density in soil and rice grain cultivated in a South Korean paddy field. Communications in Soil Science and Plant Analysis, 48(13), 1603–1615. https://doi.org/10.1080/00103624.2017.1374401.
Lammel, D. R., Nüsslein, K., Cerri, C. E. P., Veresoglou, S. D. & Rillig, M. C. (2021). Soil biota shift with land use change from Pristine rainforest and savannah (Cerrado) to agriculture in Southern Amazonia. Molecular Ecology, 30(19), 4899–4912. https://doi.org/10.1111/mec.16090.
Li, Y., Wang, J. & Shao, M. (2021). Assessment of earthworms as an indicator of soil degradation: a case-study on loess soils. Land Degradation and Development, 32(8), 2606–2617. https://doi.org/10.1002/ldr.3928.
Likus-Cieślik, J., Józefowska, A., Frouz, J., Vicena, J. & Pietrzykowski, M. (2023). Relationships between soil properties, vegetation and soil biota in extremely sulfurized mine soils. Ecological Engineering, 186, 1–10. https://doi.org/10.1016/j.ecoleng.2022.106836.
Liu, W., Graham, E. B., Zhong, L., Zhang, J., Li, W., Li, Z., Lin, X. & Feng, Y. (2020). Dynamic microbial assembly processes correspond to soil fertility in sustainable paddy agroecosystems. Functional Ecology, 34(6), 1244–1256. https://doi.org/10.1111/1365-2435.13550.
Luo, S., De Deyn, G. B., Jiang, B., & Yu, S. (2017). Soil biota suppress positive plant diversity effects on productivity at high but not low soil fertility. Journal of Ecology, 105(6), 1766–1774. https://doi.org/10.1111/1365-2745.12773.
Ma, J., Chen, Y., Wang, K., Huang, Y. & Wang, H. (2021). Re-utilization of chinese medicinal herbal residues improved soil fertility and maintained maize yield under chemical fertilizer reduction. Chemosphere, 283, 1–8. https://doi.org/10.1016/j.chemosphere.2021.131262.
Mayer, M., Rewald, B., Matthews, B., Sandén, H., Rosinger, C., Katzensteiner, K., Gorfer, M., Berger, H., Tallian, C., Berger, T. W. & Godbold, D. L. (2021). Soil fertility relates to fungal-mediated decomposition and organic matter turnover in a temperate mountain forest. New Phytologist, 231(2), 777–790. https://doi.org/10.1111/nph.17421.
Mujiyo, M., Puspito, G. J., Suntoro, S., Rahayu, R. & Purwanto, P. (2022). The effect of change in function from paddy field to dry land on soil fertility index. Environment and Natural Resources Journal, 20(1), 42–50. https://doi.org/10.32526/ennrj/20/202100127.
Mukashema, A. (2007). Mapping and modelling landscape-based soil fertility change in relation to human induction case study : Gishwati Watershed of the Rwandan highlands mapping and modelling landscape-based soil fertility change in relation to human induction. International Institute For Geo-Information Science and Earth Observation Enschede. Netherlands. https://webapps.itc.utwente.nl/librarywww/papers_2007/msc/nrm/mukashema.pdf.
Ning, C. C, Gao, P. D, Wang, B. Q., Lin, W. P., Jiang, N. H. & Cai, K. Z. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4.
Nurhidayati, N., Machfudz, M. & Basit, A. (2021). Yield and nutritional quality of green leafy lettuce (Lactuca sativa L.) under soilless culture system using various composition of growing media and vermicompost rates. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 201. https://doi.org/10.20961/carakatani.v36i2.46131.
Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B. & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs. Springer, Switzerland. https://doi.org/10.1007/978-3-030-61010-4_5.
Ponge, J. F., Pérès, G., Guernion, M., Ruiz-Camacho, N., Cortet, J. Ô., Pernin, C., Villenave, C., Chaussod, R., Martin-Laurent, F., Bispo, A. & Cluzeau, D. (2013). The impact of agricultural practices on soil biota: a regional study. Soil Biology and Biochemistry, 67, 271–284. https://doi.org/10.1016/j.soilbio.2013.08.026.
Sanchez, L., Ermolenkov, A., Biswas, S., Septiningsih, E. M. & Kurouski, D. (2020). Raman spectroscopy enables non-invasive and confirmatory diagnostics of salinity stresses, nitrogen, phosphorus, and potassium deficiencies in rice. Frontiers in Plant Science, 11, 1–8. https://doi.org/10.3389/fpls.2020.573321.
Sharma, U., Paliyal, S. S., Sharma, S. P. & Sharma, G. D. (2014). Effects of continuous use of chemical fertilizers and manure on soil fertility and productivity of maize–wheat under rainfed conditions of the western himalayas. Communications in Soil Science and Plant Analysis, 45(20), 2647–2659. https://doi.org/10.1080/ 00103624.2014. 941854.
Shindo, M., Yamamoto, S., Shimomura, K. & Umehara, M. (2020). Strigolactones decrease leaf angle in response to nutrient deficiencies in rice. Frontiers in Plant Science, 11, 1–11. https://doi.org/10.3389/fpls.2020.00135.
Singh, J. S. & Gupta, V. K. (2018). Soil microbial biomass: a key soil driver in management of ecosystem functioning. Science of the Total Environment, 634, 497–500. https://doi.org/10.1016/j.scitotenv.2018.03.373.
Solomou, A. D., Sfougaris, A. I., Vavoulidou, E. M. & Csuzdi, C. (2013). Species richness and density of earthworms in relation to soil factors in olive orchard production systems in central greece. Communications in Soil Science and Plant Analysis, 44, 301–311. https://doi.org/10.1080/00103624.2013.741904.
Song, D., Tang, J., Xi, X., Zhang, S., Liang, G., Zhou, W. & Wang, X. (2018). Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. European Journal of Soil Biology, 84, 1–10. https://doi.org/10.1016/j.ejsobi.2017.11.003.
Subin, K., Madan, K. & Udhab, R. K. (2015). Earthworm population in relation to different land use and soil characteristics. Journal of Ecology and The Natural Environment, 7(5), 124–131. https://doi.org/10.5897/jene2015.0511.
Tóth, Z., Hornung, E. & Báldi, A. (2018). Effects of set-aside management on certain elements of soil biota and early stage organic matter decomposition in a High Nature Value Area, Hungary. Nature Conservation, 29, 1–26. https://doi.org/10.3897/natureconservation.29.24856.
Vasileva, V. & Kostov, O. (2015). Effect of mineral and organic fertilization on alfalfa forage and soil fertility. Emirates Journal of Food and Agriculture, 27(9), 678–686. https://doi.org/10.9755/ejfa.2015.05.288.
Villa, Y. B., Khalsa, S. D. S., Ryals, R., Duncan, R. A., Brown, P. H. & Hart, S. C. (2021). Organic matter amendments improve soil fertility in almond orchards of contrasting soil texture. Nutrient Cycling in Agroecosystems, 120(3), 343–361. https://doi.org/10.1007/s10705-021-10154-5.
Wan, L. J., Tian, Y., He, M., Zheng, Y. Q., Lyu, Q., Xie, R. J., Ma, Y. Y., Deng, L. & Yi, S. L. (2021). Effects of chemical fertilizer combined with organic fertilizer application on soil properties, citrus growth physiology, and yield. Agriculture (Switzerland), 11(12), 1–15. https://doi.org/10.3390/agriculture11121207.
Wang, J. L., Liu, K. Lou, Zhao, X. Q., Zhang, H. Q., Li, D., Li, J. J. & Shen, R. F. (2021). Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil. Science of the Total Environment, 793, 1–10. https://doi.org/10.1016/j.scitotenv.2021.148664.
Wen-wen, Z., Chong, W., Rui, X. U. E. & Li-jie, W. (2019). Effects of salinity on the soil microbial community and soil fertility. Journal of Integrative Agriculture, 18(6), 1360–1368. https://doi.org/10.1016/S2095-3119(18)62077-5.
Wood, S. A., Tirfessa, D. & Baudron, F. (2018). Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agriculture, Ecosystems and Environment, 266, 100–108. https://doi.org/10.1016/j.agee.2018.07.025.
Wu, F., Wan, J. hon chi, Wu, S. & Wong, M. (2012). Effects of earthworms and plant Growth-Promoting Rhizobacteria (PGPR) on availability of nitrogen, phosphorus, and potassium in soil. Journal of Plant Nutrition and Soil Science, 175(3), 423–433. https://doi.org/10.1002/jpln.201100022.
Wu, L., Jiang, Y., Zhao, F., He, X., Liu, H. & Yu, K. (2020). Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-66648-9.
Yahyaabadi, M., Hamidian, A. H. & Ashrafi, S. (2018). Dynamics of earthworm species at different depths of orchard soil receiving organic or chemical fertilizer amendments. Eurasian Journal of Soil Science, 7(4), 318–325. https://doi.org/10.18393/ejss.454506.
Yang, M.., Abul, M., Xiaomin Z. & Xi, G. (2017). Assessment of a soil fertility index using visible and near- infrared spectroscopy in the rice paddy region of southern China. Eurasian Journal of Soil Science, 71, 615–626. https://doi.org/10.1111/ejss.12907.
Yang, L., Zhao, F., Chang, Q., Li, T., & Li, F. (2015). Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agricultural Water Management, 160, 98–105. https://doi.org/10.1016/j.agwat.2015.07.002.
Zhang, X., Zhu, A., Xin, X., Yang, W., Zhang, J. & Ding, S. (2018). Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crops Research, 221, 157–165. https://doi.org/10.1016/j.fcr.2018.02.025.
Zhou, B., Chen, Y., Zhang, C., Li, J., Tang, H., Liu, J., Dai, J. & Tang, J. (2021). Earthworm biomass and population structure are negatively associated with changes in organic residue nitrogen concentration during vermicomposting. Pedosphere, 31(3), 433–439. https://doi.org/10.1016/S1002-0160(20)60089-3.
Zhu, D., Delgado B.M., Su, J. Q., Ding, J., Li, H., Gillings, M. R., Penuelas, J. & Zhu, Y. G. (2021). Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environmental Science and Technology, 55(11), 7445–7455. https://doi.org/10.1021/acs.est.1c00811.
Zhu, Z., Bai, Y., Lv, M., Tian, G., Zhang, X., Li, L., Jiang, Y. & Ge, S. (2020). Soil fertility, microbial biomass, and microbial functional diversity responses to four years fertilization in an Apple Orchard in North China. Horticultural Plant Journal, 6(4), 223–230. https://doi.org/10.1016/j.hpj.2020.06.003.
Research Articles

How to Cite

A comparative study of soil fertility and biota population under organic, semi-organic, and conventional farming system of rice fields in Giriwoyo District, Wonogiri Regency, Indonesia. (2023). Journal of Applied and Natural Science, 15(4), 1768-1780. https://doi.org/10.31018/jans.v15i4.5201