Keshava Murthy M V Shwetha A.


Nematodes constitute the most significant, most numerous, and diversified set of multicellular organisms on the earth. They live in various environments and exhibit a wide range of behavioural patterns. In the soil food web, they can be found at various trophic levels as herbivores (plant parasitic nematodes), bacterivores, fungivores, omnivores, and predators. As there were fewer studies on nematode ecology in the Udupi region, the present study aims to study the community structure and functional diversity of soil nematodes. Soil samples were collected following opportunistic random sampling employing a soil auger and were stored at 40C until transported to the laboratory. Nematodes were isolated from soil, killed, fixed, dehydrated, and displayed on a glass slide after isolation. The standard keys were used to identify the individual to genera level. 62 genera of soil nematodes belonging to 26 families and 7 orders were identified. Predator were the most prevalent communities. Various statistical indices for assessing nematode population ecology and nematodes specific indices were also calculated and it indicated a significant abundance of large plant parasitic nematodes. The region exhibits low levels of labile organic carbon and nutrient enrichment (Enrichment Index (EI):14.06 to 21.22). Despite this, the soil food web in the region is well-structured, indicated by Structure Index (SI) (85.51 to 89.74). Prevalence of fungal decomposition dominance and the soil appears to be minimally disturbed, as indicated by high channel index values and low Basal Index (BI) values, respectively





c-p values, Maturity Index, Population ecology, Structure Index, Trophic diversity

Abebe, E., Andrassy, I. & Traunspurger, W. (2006). Freshwater Nematodes: Ecology and Taxonomy. CABI
Baliton, R., Landicho, L., Cabahug, R. E., Roselyn F. Paelmo, Laruan, K., Rodriguez, R., G. Visco. & Castillo, A. K. A. (2020). Ecological services of agroforestr systems in selected upland farming communities in the Philippines. Biodiversitas Journal of Biological Diversity, 21(2). https://doi.org/10.13057/biodiv/d 210237
Baniyamuddin, M., Tomar.V. & Ahmad, W.H. (2007). Functional diversity of soil inhabiting nematodes in natural forests of arunachal pradesh, India. Nematologia Mediterranea,35(2).http://journals.fcla.edu nemamedi/article/view/86931
Begon, M., Harper, J. L. & Townsend, C. A. (2009). Ecology - From Individuals to Ecosystems. Wiley-Blackwell; 4th edition
Berger, W. H. & Parker, F. L. (1970). Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Science, 168(3937), 1345–1347.https://doi.org/10.1126/science.168.3937.1345
Berkelmans, R., Ferris, H., Tenuta, M. & Van Bruggen, A. (2003). Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Applied Soil Ecology, 23(3), 223–235. https://doi.org/10.1016/s0929-1393(03)00047-7
Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83(1), 14–19. https://doi.org/10.1007/bf00324627
Bongers, T. & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10(3), 239–251. https://doi.org/10.1016/s0929-1393(98)00123-1
Chandra, B. & Khan, M. R. (2011). Dynamics of soil nematodes in vegetable-based crop sequences in West Bengal, India. Journal of Plant Protection Research, 51(1). https://doi.org/10.2478/v10045-011-0002-3
Cortois, R., Veen, G. F. C., Duyts, H., Abbas, M., Strecker, T., Kostenko, O., Eisenhauer, N., Scheu, S., Gleixner, G., De Deyn, G. B. & van der Putten, W.H. (2017). Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere, 8(5), e01719. https://doi.org/10.1002/ecs2.1719
Daramola, F. Y., Lewu, F. B. & Malan, A. P. (2021). Diversity and population distribution of nematodes associated with honeybush (Cyclopia spp.) and rooibos (Aspalathus linearis) in the Western Cape province of South Africa. Heliyon, 7(2), e06306.https://doi.org/10.1016/j.heliyon.2021.e06306
Deepika, B. V., Ramakrishnaiah, C. R. & Naganna, S. R. (2020). Spatial variability of ground water quality: a case study of Udupi district, Karnataka State, India. Journal of Earth System Science, 129(1) https://doi.org/10.1007/s12040-020-01471-4
Dietrich, P., Cesarz, S., Liu, T., Roscher, C. & Eisenhauer, N. (2021). Effects of plant species diversity on nematode community composition and diversity in a longterm biodiversity experiment. Oecologia, 197(2), 297–311. https://doi.org/10.1007/s00442-021-04956-1
Du Preez, G., Daneel, M., De Goede, R., Du Toit, M. J., Ferris, H., Fourie, H., Geisen, S., Kakouli-Duarte, T., Korthals, G., Sánchez-Moreno, S. & Schmidt, J. H. (2022, June). Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry, 169, 108640. https://doi.org/10.1016/j.soilbio.2022.108640
Eisenhauer, N., Migunova, V. D., Ackermann, M., Ruess, L. & Scheu, S. (2011). Changes in Plant Species Richness Induce Functional Shifts in Soil Nematode Communities in Experimental Grassland. PLoS ONE, 6(9), e24087. https://doi.org/10.1371/journal.pone.0024087
Ferris, H., Bongers, T. & de Goede, R. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18(1), 13–29. https://doi.org/10.1016/s0929-1393(01)00152-4
Freckman, D. W. & Ettema, C. H. (1993). Assessing nematode communities in agroecosystems of varying human intervention. Agriculture, Ecosystems & Environment, 45(3–4), 239–261. https://doi.org/10.1016/0167-8809(93)90074-y
Gomes, G. S., Huang, S. P. & Cares, J. E. (2003). Nematode community, trophic structure and population fluctuation in soybean fields. Fitopatologia Brasileira, 28(3), 258–266. https://doi.org/10.1590/s0100-41582003000300006
Gotelli, N. J. & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391.https://doi.org/10.1046/j.1461 0248. 2001. 00230. x
Gruzdeva, L. I. & Sushchuk, A. A. (2010). Trends of nematode community recovery after soil cover degradation. Biology Bulletin, 37(6), 647–652. https://doi. org/ 10.1134/s1062359010060130
Gutiérrez, C., Fernández, C., Escuer, M., Campos-Herrera, R., Beltrán, E. M., Carbonell, G. & Martín, J. A. R. (2016). Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environmental Pollution, 213, 184–194. https://doi.org/10.1016/j.envpol.2016.02.012
Hoogen, J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen X, Costa SR, Creamer R, Mauro da Cunha Castro J, Dam M, Djigal D, Escuer M, Griffiths BS, Gutiérrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin AA, Li Q, Liang W, Magilton M, Marais M, Martín JAR, Matveeva E, Mayad EH, Mulder C, Mullin P, Neilson R, Nguyen TAD, Nielsen UN, Okada H, Rius JEP, Pan K, Peneva V, Pellissier L, Carlos Pereira da Silva J, Pitteloud C, Powers TO, Powers K, Quist CW, Rasmann S, Moreno SS, Scheu S, Setälä H, Sushchuk A, Tiunov AV, Trap J, van der Putten W, Vestergård M,Villenave C, Waeyenberge L, Wall DH, Wilschut R, Wright DG, Yang J, Crowther TW (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194–198. https://doi.org/10.1038/s41586-019-1418-6
Kashyap, P., Afzal, S., Rizvi, A. N., Ahmad, W., Uniyal, V. P. & Banerjee, D. (2022). Nematode community structure along elevation gradient in high altitude vegetation cover of Gangotri National Park (Uttarakhand), India. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-05472-9
Kouser, N., Nisa, R. U., Allie, K. A. & Shah, A. A. (2022). Nematode diversity and community structure assessment in different vegetations of Jammu division of J & K, India. Journal of Applied and Natural Science, 14(1), 102–115. https://doi.org/10.31018/jans.v14i1.3275
Kouser, Y., Shah, A. A. & Rasmann, S. (2021). The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecology and Evolution, 11(20), 13793–13804. https://doi.org/10.1002/ece3.8061
Kumar, P., Dobriyal, M., Kale, A., Pandey, A. K., Tomar, R. S. & Thounaojam, E. (2022). Calculating forest species diversity with information-theory based indices using sentinel-2A sensor’s of Mahavir Swami Wildlife Sanctuary. PLOS ONE, 17(5), e0268018. https://doi.org/10.1371/journal.pone.0268018
Lazarova, S., Coyne, D., G. Rodríguez, M. G., Peteira, B. & Ciancio, A. (2021). Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review. Diversity, 13(2), 64.https://doi.org/10.3390/d13020064
Li, Q., Liang, W., Zhang, X. & Mahamood, M. (2017). Soil nematodes of grasslands in northern China. Academic Press
Nisa, R. U., Tantray, A. Y., Kouser, N., Allie, K. A., Wani, S. M., Alamri, S. A., Alyemeni, M. N., Wijaya, L. & Shah, A. A. (2021, May). Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi Journal of Biological Sciences, 28(5), 3049–3059. https://doi.org/10.1016/j.sjbs.2021.02.046
Niu, X., Cheng, Y., Feng, X., Sun, F. & Gu, Y. (2022). Effects of fertilizer and weed species richness on soil nematode community in a microcosm field experiment. Soil Ecology Letters, 5(1), 151–168. https://doi.org/10.1007/s42832-021-0123-1
Okada, H., Harada, H. & Kadota, I. (2004). Application of diversity indices and ecological indices to evaluate nematode community changes after soil fumigation. Nihon Senchū Gakkaishi, 34(2), 89–98. https://doi.org/10.3725/jjn1993.34.2_89
Pokharel, R. K., Marahatta, S. P., Handoo, Z. A. & Chitwood, D. J. (2015). Nematode community structures in different deciduous tree fruits and grape in Colorado, USA and impact of organic peach and apple production practices. European Journal of Soil Biology, 67, 59–68. https://doi.org/10.1016/j.ejsobi.2015.02.003
Perry, R. N., Hunt, D., & Subbotin, S. A. (2020). Techniques for Work with Plant and Soil Nematodes. CABI
Ramachandra, T. V., Setturu, B. & Vinay, S. (2021). Assessment of Forest Transitions and Regions of Conservation Importance in Udupi district, Karnataka. IndianForester, 147(9), 834. https://doi.org/10.36808/if/2021/v147i9/164166
Ravichandra, N. (2014). Horticultural Nematology. Springer https://doi.org/10.1007/978-81-322-1841-8
Renčo, M., Čerevková, A. & Hlava, J. (2022). Life in a contaminated environment: How soil nematodes can indicate Long-Term Heavy-Metal Pollution. Journal of Nematology, 54(1). https://doi.org/10.2478/jofnem-2022-0053
Sánchez-Moreno, S. & Navas, A. (2007). Nematode diversity and food web condition in heavy metal polluted soils in a river basin in southern Spain. European Journal of Soil Biology, 43(3), 166–179. https://doi.org /10.1016/j.ejsobi.2007.01.002
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
Sieriebriennikov, B., Ferris, H. & de Goede, R. G. (2014). NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90–93. https://doi.org/10.1016/j.ejsobi.2014.02.004
Sikora, R. A., Coyne, D., Hallmann, J. & Timper, P. (2018). Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. 3rd Edition. CABI
Simpson, E. H. (1949, April). Measurement of Diversity. Nature, 163(4148), 688– 688.https://doi.org /10.1038/163688a0
Tomar, V. & Ahmad, W. (2009). Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia, 46(3), 183–189. https://doi.org/10.2478/s11687-009-0034-7
Viketoft, M. & Sohlenius, B. (2011). Soil nematode populations in a grassland plant diversity experiment run for seven years. Applied Soil Ecology, 48(2), 174–184. https://doi.org/10.1016/j.apsoil.2011.03.008
Wani, S. M., Allie, K. A., Nisa, R. U., Kouser, N. & Shah, A. A. (2022). A Study on Community Diversity of Soil-Inhabiting Nematodes in Lower Forest Area of Gulmarg of District Baramulla, Jammu and Kashmir, India. Proceedings of the Zoological Society, 75(1), 111–117. https://doi.org/10.1007/s12595-022-00433-6
Williams, B. K. & Brown, E. D. (2019). Sampling and analysis frameworks for inference in ecology. Methods in Ecology and Evolution, 10(11), 1832–1842. https://doi.org/10.1111/2041-210x.13279
Yang, B., Banerjee, S., Herzog, C., Ramírez, A. C., Dahlin, P. & van der Heijden, M. G. (2021). Impact of land use type and organic farming on the abundance, diversity, community composition and functional properties of soil nematode communities in vegetable farming. Agriculture, Ecosystems & Environment, 318, 107488. https://doi.org/10.1016/j.agee.2021.107488
Yeates, G. W., Bongers, T., De Goede, R., Freckman, D. W. & Georgieva, S. (1993). Feeding habits in soil nematode families and genera-an outline for soil ecologists. https://pubmed.ncbi.nlm.nih.gov/19279775
Yeates, G. & Bongers, T. (1999). Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1–3), 113–135. https://doi.org/10.1016/s0167-8809(99)00033-x
Zheng, G., Shi, L., Wu, H. & Peng, D. (2012). Nematode communities in continuous tomato-cropping field soil infested by root-knot nematodes. Acta Agriculturae Scandinavica Section B-soil and Plant Science, 62(3), 216–223. https://doi.org/10.1080/09064710.2011.598545
Research Articles

How to Cite

Community structure and functional diversity of soil nematodes from Udupi district, Karnataka, India. (2023). Journal of Applied and Natural Science, 15(4), 1484-1498. https://doi.org/10.31018/jans.v15i4.4972