Article Main

Shramila Yadav Shikha Kaushik Neelu Dheer Sarita Kumar Gurmeet SIngh Mansi Chaudhary Meenakshi Gupta

Abstract

The loss of metals due to corrosion can be prevented using green inhibitors. Using natural and eco-friendly plant products is futuristic, preventing the environment from toxic and harmful chemicals. The present study aimed to investigate whole beetroot (BR, Beta vulgaris) for its anti-corrosion behaviour by galvanostatic polarization and electrochemical impedance techniques at a temperature between 298 K- 328 K. The temperature study would help in proposing BR's adsorption mechanism on metal surfaces. The maximum inhibition efficiency of 94% at 298 K for 5% BR was observed, whereas a minimum of 75% was obtained for 1% BR at 328 K. It was found to be a mixed-type inhibitor that followed Langmuir isotherm.  From thermodynamic studies, ΔGoads   was found to be -13.64 kJ/mol, which revealed that BR adsorbed physically on the surface of mild steel. Rct values increased while Cdl values decreased on exposure of metal surface with BR extract. The scanning electron micrographs (SEM) and atomic force micrographs (AFM) witnessed the formation of a protective layer on the mild steel surface, which served as a barrier between the metal and corrosive medium. The present study provides a remedy for the financial and structural losses due to metal corrosion in an acidic medium.

Article Details

Article Details

Keywords

Corrosion, Electrochemical Impedance Spectroscopy, Mild Steel, Langmuir isotherm, Physical adsorption

References
Abdallah, M., El‐Etre, A. Y., Soliman, M. G. & Mabrouk, E. M. (2006). Some organic and inorganic compounds as inhibitors for carbon steel corrosion in 3.5 percent NaCl solution, Anti-corrosion Methods and Materials. 53, 118-123. https://doi.org/10.1108/00035590610650820
Akinbulumo, O. A., Odejobi, O. J. & Odekanle, E. L. (2020). Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl. Results in Materials, 5, 100074. https://doi.org/10.1016/j.rinma.2020.100074
Al-Baghdadi,S., Gaaz, T.S. , Al-Adili, A., Al-Amiery, A. &Takriff, M. S. (2021). Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation, International Journal of Low-Carbon Technologies, 16 (1), 181–188. https://doi.org/10.1093/ijlct/ctaa050
Al Otaibi, N., & Hammud, H. H. (2021). Corrosion inhibition using harmal leaf extract as an eco-friendly corrosion inhibitor. Molecules, 26(22), 7024. https://doi.org/ 10.3390/molecules26227024
Alibakhshi, E., Ramezanzadeh, M., Haddadi, S. A., Bahlakeh, G., Ramezanzadeh, B. & Mahdavian, M. (2019). Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. Journal of Cleaner Production, 210, 660-672. https://doi.org/10.1016/j.jclepro.2018.11.053
Ambrish, S. & Quraishi, M. A. (2012). Azwain (Trachyspermum copticum) seed extract as an efficient corrosion inhibitor for aluminium in NaOH solution. Research Journal of Recent Sciences ISSN, 2277, 2502.
Aribo, S., Olusegun, S. J., Ibhadiyi, L. J., Oyetunji, A. & Folorunso, D. O. (2017). Green inhibitors for corrosion protection in acidizing oilfield environment. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 34-38. https://doi.org/10.1016/j.jaub as.2016.08.001
Badreah A. Al Jahdaly, (2023). Rosmarinus officinalis extract as eco-friendly corrosion inhibitor for copper in 1 M nitric acid solution: Experimental and theoretical studies, Arabian Journal of Chemistry, 16 (1), 104411, ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2022.104411.
Badr, E. A., Bedair, M. A. & Shaban, S. M. (2018). Adsorption and performance assessment of some imine derivatives as mild steel corrosion inhibitors in 1.0 M HCl solution by chemical, electrochemical and computational methods. Materials Chemistry and Physics, 219, 444-460.https://doi.org/10.1016/j.matchemphys.2 018.08.041
Balázs, S. (1994). Zöldségtermesztők kézikönyve. Mezőgazda Kiadó, Budapest, 631-639.
Bashir, S., Singh, G. & Kumar, A. (2017). Shatavari (Asparagus Racemosus) as green corrosion inhibitor of aluminium in acidic medium. J Mater. Environ. Sci., 8(12), 4284-4291.https://doi.org/10.26872/jmes.2017.8.12.451
Bashir, S., Singh, G., & Kumar, A. (2018). An investigation on mitigation of corrosion of aluminium by Origanum vulgare in acidic medium. Protection of Metals and Physical Chemistry of Surfaces, 54, 148-152. https://doi.org/10.1134/s2070205118010185
Caldona, E. B., Zhang, M., Liang, G., Hollis, T. K., Webster, C. E., Smith Jr, D. W. & Wipf, D. O. (2021). Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. Journal of Electroanalytical Chemistry, 880, 114858.https://doi.org/10.1016/j.jelechem.2020.114858.
Chaouiki, A., Chafiq, M., Lgaz, H., Al-Hadeethi, M. R., Ali, I. H., Masroor, S. & Chung, I. M. (2020). Green corrosion inhibition of mild steel by hydrazone derivatives in 1.0 M HCl. Coatings, 10(7), 640. https://doi.org/10.3390/coatings10070640
Chen, M. F., Chen, Y., Lim, Z. J. & Wong, M. W. (2022). Adsorption of imidazolium-based ionic liquids on the Fe (1 0 0) surface for corrosion inhibition: Physisorption or chemisorption?. Journal of Molecular Liquids, 367, 120489. https://doi.org/10.1016/j.molliq.2022.120489
Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food chemistry, 272, 192-200.https://doi.org/10.1016/j.foodchem.2018.08.022
Chugh, B., Singh, A. K., Thakur, S., Pani, B., Lgaz, H., Chung, I. M., ... & Ebenso, E. E. (2020). Comparative investigation of corrosion-mitigating behavior of thiadiazole-derived bis-schiff bases for mild steel in acid medium: experimental, theoretical, and surface study. ACS omega, 5(23), 13503. https://doi.org/10.1021/acsomega.9b04274
Dhaundiyal, P., Bashir, S., Sharma, V. & Kumar, A. (2019). An investigation on mitigation of corrosion of mildsteel by Origanum vulgare in acidic medium. Bulletin of the Chemical Society of Ethiopia, 33(1), 159-168. https://doi.org/10.4314/bcse.v33i1.16
Durowaye, S. I., Durowaye, V. O. & Begusa, B. M. (2014). Corrosion Inhibition of Mild Steel in Acidic Medium by Methyl Red (2, 4-Dimethylamino-2'-carboxylazobenzene). Int. J. Eng. Technol, 4(8), 469-475.
Fu, S., Yang, X., Peng, Y., Wang, Q., Sun, Q., Zhang, J., ... & Li, J. (2023). Corrosion Behaviors of Tetrasodium Iminodisuccinate (IDS) as an Environmentally Friendly Inhibitor: Experimental and Theoretical Studies. Coatings, 13(3), 613. https://doi.org/10.3390/coatings13030613
Gao, X., Zhao, C., Lu, H., Gao, F. & Ma, H. (2014). Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions. Electrochimica Acta, 150, 188-196.https://doi.org/10.1016/j.electacta.2014.09.160
Goyal, M., Kumar, S., Bahadur, I., Verma, C. & Ebenso, E. E. (2018). Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids, 256, 565-573. https://doi.org/10.1016/j.molliq.2018.02.045
Habeeb, H. J., Luaibi, H. M., Dakhil, R. M., Kadhum, A. A. H., Al-Amiery, A. A., & Gaaz, T. S. (2018). Development of new corrosion inhibitor tested on mild steel supported by electrochemical study. Results in physics, 8, 1260-1267. https://doi.org/10.1016/j.rinp.2018.02.015
Joycee, S. C., Raja, A. S., Amalraj, A. S. & Rajendran, S. (2022). Corrosion mitigation by an eco-friendly inhibitor: Beta vulgaris (beetroot) extract on mild steel in simulated oil well water medium. Int. J. Corros. Scale Inhib, 11(1), 82-101. https://doi.org/10.17675/2305-6894-2022-11-1-4
Kanojia, R. & Singh, G. (2005). An interesting and efficient organic corrosion inhibitor for mild steel in acidic medium. Surface engineering, 21(3), 180- 186.https://doi.org/10.1179/174329405x49985
Kumar, S. A., Sankar, A., Kumaravel, M., & Rameshkumar, S. (2013). The Inhibition of Mild Steel Corrosion in Sulphuric Acid Media by Acorus Calamus Extract. International Journal of Engineering Innovations and Research, 2(2), 167.
Larabi, L., Harek, Y., Benali, O. & Ghalem, S. (2005). Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl. Progress in Organic Coatings, 54(3), 256-262.https://doi.org/10.1016/j.porgcoat.2005.06.015
Loto, R. T. & Tobilola, O. (2018). Corrosion inhibition properties of the synergistic effect of 4-hydroxy-3-methoxybenzaldehyde and hexadecyltrimethylammoniumbromide on mild steel in dilute acid solutions. Journal of King Saud University-Engineering Sciences, 30(4), 384-390. https://doi.org/10.1016/j.jksues.2016.10.001
Mathew, Z. P., Rajan, K., Augustine, C., Joseph, B. & John, S. (2020). Corrosion inhibition of mild steel using poly (2-ethyl-2-oxazoline) in 0.1 M HCl solution. Heliyon, 6(11), e05560.
https://doi.org/10.1016/j.heliyon.2020.e05560
Medupin, R. O., Ukoba, K., Yoro, K. O. & Jen, T. C. (2023). Sustainable approach for corrosion control in mild steel using plant-based inhibitors: A review. Materials Today Sustainability, 100373. https://doi.org/10.1016/j.mtsust.2023.100373
Mobin, M., Basik, M. & El Aoufir, Y. (2019). Corrosion mitigation of mild steel in acidic medium using Lagerstroemia speciosa leaf extract: A combined experimental and theoretical approach. Journal of Molecular Liquids, 286, 110890. https://doi.org/10.1016/j.molliq.2019.110890
Muthamma, K., Kumari, P., Lavanya, M., & Rao, S. A. (2021). Corrosion inhibition of mild steel in acidic media by N- [(3, 4-Dimethoxyphenyl) Methyleneamino]-4-Hydroxy-Benzamide. Journal of Bio-and Tribo-Corrosion, 7, 1-19. https://doi.org/10.1007/s40735-020-00439-7
Nagiub, A. M., Khalil, H. F. Y., Mahross, M. H., Mahran, B. N. A. & El-Sabbah, M. M. B. (2016). Beet Root Extract as a Corrosion Inhibitor for Mild Steel in 1.0 M HCl Solution. Int. J. Scient. Engg. Research, 7, 656-663.
Negm, N. A. & Zaki, M. F. (2008). Corrosion inhibition efficiency of nonionic Schiff base amphiphiles of p-aminobenzoic acid for aluminum in 4N HCL. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1-3), 97-102. https://doi.org/10.1016/j.colsurfa.2008.02.027
Nemzer, B., Pietrzkowski, Z., Spórna, A., Stalica, P., Thresher, W., Michałowski, T. & Wybraniec, S. (2011). Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chemistry, 127(1), 42-53.https://doi.org/10.1016/j.foodchem.20 10.12.081
Nikan, M., & Manayi, A. (2019). Beta vulgaris L. In Nonvitamin and Nonmineral Nutritional Supplements (pp. 153-158). Academic Press. https://doi.org/10.1016/b978-0-12-812491-8.00021-7
Nithya, A., Shanthy, P., Vijaya, N., Rathish, R. J., Prabha, S. S., Joany, R. M. & Rajendran, S. (2015). Inhibition of Corrosion of Aluminium by an aqueous extract of beetroot (Betanin). Int. J. Nano Corr. Sci. Eng, 2(1), 1-11.
Peimani, A. & Nasr-Esfahani, M. (2018). Application of anise extract for corrosion inhibition of carbon steel in CO 2 saturated 3.0% NaCl solution. Protection of Metals and Physical Chemistry of Surfaces, 54, 122-134. https://doi.org/10.1134/s2070205118010240
Prabakaran, M., Kim, S. H., Mugila, N., Hemapriya, V., Parameswari, K., Chitra, S. & Chung, I. M. (2017). Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. Journal of Industrial and Engineering Chemistry, 52, 235-242. https://doi.org/10.1016/j.jiec.2017.03.052
Punitha, N., Sundaram, R. G., Vijayalakshmi, K., Rengasamy, R. & Elangovan, J. (2022). Interactions and corrosion mitigation prospective of pyrazole derivative on mild steel in HCl environment. Journal of the Indian Chemical Society, 99(9), 100667. https://doi.org/10.1016/j.jics.2022.100667
Rahiman, A. F. S. A. & Sethumanickam, S. (2017). Corrosion inhibition, adsorption and thermodynamic properties of poly (vinyl alcohol-cysteine) in molar HCl. Arabian Journal of Chemistry, 10, S3358-S3366. https://doi.org/10.1016/j.arabjc.2014.01.016
Rodríguez-Torres, A., Olivares-Xometl, O., Valladares-Cisneros, M. G. & González-Rodríguez, J. G. (2018). effect of green corrosion inhibition by prunuspersica on AISI 1018 carbon steel in 0.5 M H2SO4. International Journal of Electrochemical Science, 13, 3023-3049.
https://doi.org/10.20964/2018.03.40
Sajadi, G. S., Naghizade, R., Zeidabadinejad, L., Golshani, Z., Amiri, M. & Hosseini, S. M. A. (2022). Experimental and theoretical investigation of mild steel corrosion control in acidic solution by Ranunculus arvensis and Glycine max extracts as novel green inhibitors. Heliyon, 8(10), e10983. https://doi.org/10.1016/j.heliyon.20 22.e10983
Sangeetha, M., Rajendran, S., Sathiyabama, J. & Prabhakar, P. (2012). Asafoetida extract (ASF) as green corrosion inhibitor for mild steel in sea water. Int. Res. J. Environment Sci, 1(5), 14-21.
Selvi, J. A., Rajendran, S., Sri, V. G., Amalraj, A. J., & Narayanasamy, B. (2009). Corrosion inhibition by beet root extract. Portugaliae Electrochimica Acta, 27(1), 1-11.
https://doi.org/10.4152/pea.200901001
Sharma, S., Sharma, M., Dheer, N., Ujjain, S. K., Ahuja, P., Singh, G. & Kanojia, R. (2023) A Novel Leaf Extract of Sorghum Vulgare as an Eco-friendly Corrosion Inhibitor for Mild Steel Corrosion in 0.5 M H2SO4. Portugaliae Electrochimica Acta, 41, 273-287. https://doi.org/10.4152/pea.2023410402
Shukla, S. K., & Ebenso, E. E. (2011). Corrosion inhibition, adsorption behavior and thermodynamic properties of streptomycin on mild steel in hydrochloric acid medium. Int. J. Electrochem. Sci, 6(8), 3277-3291.
Sin, H. L. Y., Rahim, A. A., Gan, C. Y., Saad, B., Salleh, M. I. & Umeda, M. (2017). Aquilaria subintergra leaves extracts as sustainable mild steel corrosion inhibitors in HCl. Measurement, 109, 334-345. https://doi.org/10.1016/j.measurement.2017.05.045
Székely, D. & Máté, M. (2022). Red Beetroot (Beta Vulgaris L.). In Advances in Root Vegetables Research. Intech Open. https://doi.org/10.5772/intechopen.106692
Umeozokwere, A. O., Mbabuike, I. U., Oreko, B. U. & Ezemuo, D. T. (2016). Corrosion rates and its impact on mild steel in some selected environments. Journal of Scientific and Engineering Research, 3(1), 34-43.
Verma, C., Ebenso, E. E., Bahadur, I. & Quraishi, M. A. (2018). An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. Journal of MolecularLliquids, 266, 577-590. https://doi.org/10.1016/j.molliq.2018.06.110
Victoria, S. N., Prasad, R. & Manivannan, R. (2015). Psidium guajava leaf extract as green corrosion inhibitor for mild steel in phosphoric acid. Int. J. Electrochem. Sci, 10(3), 2220-2238.
Vu, N. S. H., Binh, P. M. Q., Dao, V. A., Thu, V. T. H., Van Hien, P., Panaitescu, C. & Nam, N. D. (2020). Combined experimental and computational studies on corrosion inhibition of Houttuynia cordata leaf extract for steel in HCl medium. Journal of Molecular Liquids, 315, 113787.https://doi.org/10.1016/j.molliq.2020.113787
Yohai del Cerro, L., Vazquez, M. V. & Valcarce, M. B. (2013). Phosphate ions as corrosion inhibitors for reinforcement steel in chloride-rich environments. Electrochimica acta, 88–96, https://doi.org/10.1016/j.electacta.20 13.03.180
Zou, C., Yan, X., Qin, Y., Wang, M. & Liu, Y. (2014). Inhibiting evaluation of β-Cyclodextrin-modified acrylamide polymer on alloy steel in sulfuric solution. Corrosion Science, 85, 445-454. https://doi.org/10.1016/j.corsci.20 14.04.046
Section
Research Articles

How to Cite

Experimental investigation of anti-corrosive behaviour of Beta vulgaris: A green approach. (2023). Journal of Applied and Natural Science, 15(3), 1315-1325. https://doi.org/10.31018/jans.v15i3.4969