Oviya Govindaraj Sivakumar Uthandi Nellaiappan Olaganathan Gopal Raja ASM


Banana fiber is a rich lignocellulosic biomass source that has not been widely explored. The hemicellulose components (15 - 20 %) of banana fiber can be a feedstock for producing high-value commodity chemicals. Hemicellulose is extracted by physical, chemical, and biological methods, in which combining hydrothermal treatment with alkaline mode of extraction provides an enhanced recovery percentage. Thus, the present study aimed to optimize the hydrothermal-assisted alkaline method of xylan extraction from the banana fiber biomass. Initially, xylan was extracted with a conventional-based alkali method. A maximum of about 43 and 35 % was recovered from pretreated and raw banana fiber at 12% NaOH concentration when incubated at 55 °C for 24 h. To improve the xylan yield, the hydrothermal assisted alkali method experimented in which 67.1% and 58.3 % of xylan were recovered when treated at 121 °C for 1 h at 12% NaOH. To further enhance the xylan recovery, a two-step alkali process by combining conventional and hydrothermal-assisted alkali methods resulted in the highest xylan (81%) recovery from pretreated banana fiber when incubated with 12 % alkali for 8 h followed by steam treatment. On the other hand, a maximum of 73 % of xylan was recovered when steam treated after incubation for 24 h from raw banana fiber. Thus, the alkali incubation followed by steam treatment significantly showed the highest xylan recovery from the banana fiber biomass. The extracted xylan might be utilized as a source for various xylan-based products, including furfural, xylooligosaccharides, xylose, and xylitol, all of which have significant roles in the pharmaceutical and food industries.




Alkali extraction, Banana fiber, Hemicellulose, Two-stage process Xylan extraction

Anwar, Z., Gulfraz, M. & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of radiation research and applied sciences, 7(2), 163-173. https://doi.org/10.1016/j.jrras.2014.02.003
Badiei, M., Asim, N., Jahim, J. M. & Sopian, K. (2014). Comparison of chemical pretreatment methods for cellulosic biomass. APCBEE Procedia, 9, 170-174. https://doi.org/10.1016/j.apcbee.2014.01.030
Banerjee, S., Patti, A. F., Ranganathan, V. & Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38-50. https://doi.org/10.1016/j.fbp.2019.06.012
Barhoum, A., Jeevanandam, J., Rastogi, A., Samyn, P., Boluk, Y., Dufresne, A.& Bechelany, M. (2020). Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 12(45), 22845-22890.
Carvalheiro, F., Duarte, L. C. & Gírio, F. (2008). Hemicellulose biorefineries: a review on biomass pretreatments. Journal of scientific & industrial research, 849-864.
Capetti, C. C. D. M., Vacilotto, M. M., Dabul, A. N. G., Sepulchro, A. G. V., Pellegrini, V. O. A.& Polikarpov, I. (2021). Recent advances in the enzymatic production and applications of xylooligosaccharides. World Journal of Microbiology and Biotechnology, 37, 1-12.
Cecci, R. R. R., Passos, A. A., de Aguiar Neto, T. C. & Silva, L. A. (2020). Banana pseudostem fibers characterization and comparison with reported data on jute and sisal fibers. SN Applied Sciences, 2(1), 20.
Chandel, A. K., Singh, O. V. & Venkateswar Rao, L. (2010). Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. Sustainable biotechnology: Sources of renewable energy, 63-81.
Chang, M., Liu, X., Wang, X., Peng, F.& Ren, J. (2021). Mussel-inspired adhesive hydrogels based on biomass-derived xylan and tannic acid cross-linked with acrylic acid with antioxidant and antibacterial properties. Journal of Materials Science, 56(26), 14729-14740.
Chaturvedi, V. & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3, 415-431. https://doi.org/10.1007/s13205-013-0167-8
Ebringerová, A., Hromádková, Z.& Heinze, T. (2005). Hemicellulose. Polysaccharides I: Structure, characterization and use, 1-67.
Gabhane, J., William, S. P., Gadhe, A., Rath, R., Vaidya, A. N., & Wate, S. (2014). Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste management, 34(2), 498-503.
Hilpmann, G., Steudler, S., Ayubi, M. M., Pospiech, A., Walther, T., Bley, T. & Lange, R. (2019). Combining chemical and biological catalysis for the conversion of hemicelluloses: hydrolytic hydrogenation of xylan to xylitol. Catalysis Letters, 149, 69-76.
Isikgor, F. H. & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497-4559. https://doi.org/10.1039/C5PY00263J
Jayapal, N., Samanta, A. K., Kolte, A. P., Senani, S., Sridhar, M., Suresh, K. P.& Sampath, K. T. (2013). Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production. Industrial Crops and Products, 42, 14-24. https://doi.org/10.1016/j.indcrop.2012.05.019
Jnawali, P., Kumar, V., Tanwar, B., Hirdyani, H. & Gupta, P. (2018). Enzymatic production of xylooligosaccharides from brown coconut husk treated with sodium hydroxide. Waste and Biomass Valorization, 9, 1757-1766.
Limayem, A. & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in energy and combustion science, 38(4), 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
Luo, Y., Li, Z., Li, X., Liu, X., Fan, J., Clark, J. H. & Hu, C. (2019). The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catalysis Today, 319, 14-24. https://doi.org/10.1016/j.cattod.2018.06.042
Machado, G., Leon, S., Santos, F., Lourega, R., Dullius, J., Mollmann, M. E. & Eichler, P. (2016). Literature review on furfural production from lignocellulosic biomass. Natural Resources, 7(3), 115-129. http://dx.doi.org/10.4236/nr.2016.73012
Menon, V., Prakash, G., Prabhune, A. & Rao, M. (2010). Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresource technology, 101(14), 5366-5373. https://doi.org/10.1016/j.biortech.2010.01.150
Morais, E. S., Freire, M. G., Freire, C. S., Coutinho, J. A. & Silvestre, A. J. (2020). Enhanced conversion of xylan into furfural using acidic deep eutectic solvents with dual solvent and catalyst behavior. ChemSusChem, 13(4), 784-790.
Mou, H. Y., Feng, L., Huang, J., Qin, C. R., Tang, L., Fan, H. M., & Liu, J. A. (2023). Hydrothermal combined alkali pretreatment for fractionation the xylan from cotton stalk. Industrial Crops and Products, 197, 116592.
Nacos, M. K., Katapodis, P., Pappas, C., Daferera, D., Tarantilis, P. A., Christakopoulos, P. & Polissiou, M. (2006). Kenaf xylan–a source of biologically active acidic oligosaccharides. Carbohydrate polymers, 66(1), 126-134. https://doi.org/10.1016/j.carbpol.2006.02.032
Naidu, D. S., Hlangothi, S. P. & John, M. J. (2018). Bio-based products from xylan: A review. Carbohydrate polymers, 179, 28-41. https://doi.org/10.1016/j.carbpol.2017.09.064
Nechita, P., Mirela, R.& Ciolacu, F. (2021). Xylan Hemicellulose: A renewable material with potential properties for food packaging applications. Sustainability, 13(24), 13504.
Puițel, A. C., Suditu, G. D., Danu, M., Ailiesei, G. L., & Nechita, M. T. (2022). An experimental study on the hot alkali extraction of xylan-based hemicelluloses from wheat straw and corn stalks and optimization methods. Polymers, 14(9), 1662.
Qaseem, M. F., Shaheen, H., & Wu, A. M. (2021). Cell wall hemicellulose for sustainable industrial utilization. Renewable and Sustainable Energy Reviews, 144, 110996.
Ruzene, D. S., Silva, D. P., Vicente, A. A., Gonçalves, A. R. & Teixeira, J. A. (2008). An alternative application to the Portuguese agro-industrial residue: wheat straw. In Biotechnology for Fuels and Chemicals: Proceedings of the Twenty-Ninth Symposium on Biotechnology for Fuels and Chemicals Held April 29–May 2, 2007, in Denver, Colorado (pp. 453-464). Humana Press.
Saha, B. C. (2003). Hemicellulose bioconversion. Journal of industrial microbiology and biotechnology, 30(5), 279-291. https://doi.org/10.1007/s10295-003-0049-x
Samanta, A. K., Senani, S., Kolte, A. P., Sridhar, M., Sampath, K. T., Jayapal, N. & Devi, A. (2012). Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food and Bioproducts Processing, 90(3), 466-474. https://doi.org/10.1016/j.fbp.2011.11.001
Singh, R. D., Banerjee, J., Sasmal, S., Muir, J. & Arora, A. (2018). High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresource technology, 256, 110-117. https://doi.org/10.1016/j.biortech.2018.02.009
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. L. A. P. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, 1617(1), 1-16.
Teleman, A., Nordström, M., Tenkanen, M., Jacobs, A. & Dahlman, O. (2003). Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydrate Research, 338(6), 525-534. https://doi.org/10.1016/S0008-6215(02)00491-3
Van Dyk, J. S. & Pletschke, B. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology advances, 30(6), 1458-1480. https://doi.org/10.1016/j.biotechadv.2012.03.002
Citation Format
How to Cite
Optimization of hydrothermal-assisted alkali process for enhanced xylan recovery from banana fiber biomass. (2023). Journal of Applied and Natural Science, 15(3), 1308-1314. https://doi.org/10.31018/jans.v15i3.4906
More Citation Formats:
Research Articles

How to Cite

Optimization of hydrothermal-assisted alkali process for enhanced xylan recovery from banana fiber biomass. (2023). Journal of Applied and Natural Science, 15(3), 1308-1314. https://doi.org/10.31018/jans.v15i3.4906