S. Pradeep Kumar M. Mohamed Yassin S. Marimuthu M.K. Kalarani S. Thiyageshwari Guru Meenakshi


In agriculture, the utilization of nanomaterials has garnered significant global attention. This research adopts a pioneering approach to investigate the influence of nanosilica on the germination dynamics of sweetcorn seeds. The present study aimed to synthesize and analyze an amorphous nano-silica material using rice husk ash (RHA) and its impact on the germination of sweetcorn seeds (Zea mays L. sachharata). The extracted nano-silica particles dispersed into six rates of suspensions (0, 100, 200, 300, 400 and 500 ppm) were used to study their effects on seed germination. The synthesized amorphous nano-silica was  determined for size, shape, and elemental content. The amorphous nature of the silica sample was confirmed by transmission electron microscopy-selected area electron diffraction (ED) patterns and X-ray diffraction (XRD), whereas siloxane and silanol groups were mainly detected by Fourier-transform infrared (FT-IR) spectroscopy. Image obtained using scanning electron microscopy (SEM) revealed the presence of original nanoparticles alongside secondary microparticles, probably due to agglomeration. Particles in the extracted amorphous silica had an average diameter of 35 nm. Nano-silica powder was amorphous, according to XRD. As per the EDS analysis, the extracted silica sample is 96.87 % pure. The amorphous nano-silica significantly boosted germination metrics such as germination percentage, germination index, vigour index, and mean germination time of sweetcorn. With the addition of 300 ppm nano-silica, the germination percentage increased by 40.1%, the germination index by 96%, and the vigor index by 120% over control seeds. The improvement of seed germination by amorphous nano-silica in sweetcorn implies a potential application of nano-silica in seed germination.




Amorphous nano-silica, Synthesis, Rice husk ash, Seed germination, Sweetcorn

Al-Mudaris, M. A. (1998). Notes on Various Parameters Recording the Speed of Seed Germination. Der Tropenlandwirt, Beiträge zur tropischen Landwirtschaft. Jahrgang Oktober, 98, 141 - 154.
Alsaeedi, A. H., Elgarawany, M. M., El-Ramady, H., Alshaal, T. & AL-Otaibi, A. O. A. (2019). Application of Silica Nanoparticles Induces Seed Germination and Growth of Cucumber (Cucumis sativus). Journal of King Abdulaziz University - Meteorology, Environment and Arid Land Agriculture Sciences. 28. 57-68. 10.4197/Met.28-1.6.
Anand, L., Sreekanth B. and Jyothula, D. P. B. (2018). Effect of foliar application of sodium silicate on yield and grain quality of rice. International Journal of Chemical Studies, 6(6): 1711–1715.
Amooaghaie, R., Tabatabaei, F. & Ahadi, A. M. (2015). Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotox. Environ. Safe, 113, 259–270.
Amutha, K., Ravibaskar, R. & Sivakumar, G. (2010). Extraction, Synthesis and Characterization of Nanosilica from Rice Husk Ash. Int. J. Nanotechnol. Applicat., 4 (1), 61–66.
An, D., Guo, Y., Zou, B., Zhu, Y. & Wang, Z. (2011). A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy, 35, 1227–1234.
AOSA. (1983). Handbook of seed science and technology. Published by Food Products Press.
Artyszak, A. (2018). Effect of silicon fertilization on crop yield quantity and quality—a literature review in Europe. Plants, 7 (3), 54.
Azat, S., Korobeinyk, A. V., Moustakas, K. & Inglezakis, V. J. (2019). Sustainable production of pure silica from rice husk waste in Kazakhstan. J. Clean Prod., 217, 352–359
Azimi, R., Borzelabad, M. J., Feizi, H. & Azimi, A. (2014). Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish J. Chem. Technol., 16 (3), 25-29.
Bassiouni, S. M., Abdel–Aal M. S. M. & Ali, O. A. M. (2020). Productivity and quality of rice as influenced by foliar spray of different silicon sources and rates under salinity soil conditions. Journal of Plant Production 11(12), 1201–1206.
Bhattacharjee, S. (2008). Triadimefon pretreatment protects newly assembled membrane system and causes upregulation of stress proteins in salinity stressed Amaranthus lividus L. during early germination. J. Environ. Biol., 29, 805-810.
Biju, S., Fuentes, S. & Gupta, D. (2017). Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol. Biochem., 119, 250–264.
Costa, J. A. S. & Paranhos, C. M. (2018). Systematic evaluation of amorphous silica production from rice husk ashes. J. Clean Prod., 192, 688–697
Czabator, F. J. (1962). Germination value: an index combining speed and completeness of pine seed germination. Forest Sci., 8, 386-396.
Dong, W., Ma, H. & Ma, T. (2017). Effects of exogenous silicon on Loium perenne seed germination and seedlings physiological characteristics under stress conditions. J. Gansu Agric. Univ., 52 (6), 90–96.
Epstein, E. (1994). The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci., 91 (1), 11–17.
Ghareeb, H., Bozśo, Z., Ott, P. G., Repenning, C., Stahl. F. & Wydra, K. (2011). Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol. Mol. Plant, 75, 83–89.
Hossain, S. S., Mathur, L., Bhardwaj, A. & Roy, P. K. (2019). A facile route for the preparation of silica foams using rice husk ash. Int. J. Appl. Ceram Technol., 16, 1069–1077.
Jiang, Y., Yang, J., Li, M., Li, Y., Zhou, P., Wang, Q., Sun, Y., Zhu, G., Wang, Q., Zhang, P., Rui, Y. and Lynch, I. (2022). Effect of Silica-Based Nanomaterials on Seed Germination and Seedling Growth of Rice (Oryza sativa L.). Nanomaterials (Basel). 24, 12(23):4160. doi: 10.3390/nano12234160.
Jones, L. H. P. & Handreck, K. A. (1967). Silica in soils, plants, and animals. Advances in Agronomy. 19, 107–149.
Khalaki, M. A., Ghorbani, A. & Moameri, M. (2016). Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. J. Rangeland Sci., 6 (3), 221-231.
Kurabachew, H. & Wydra, K. (2014). Induction of systemic resistance and defense-related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Prot., 57, 1–7.
Li, M., Liu, X. & Tao, B. (2008). Effect of protective agent soaker on germination of maize seeds and their physiological properties. J. Northeast Agric. Univ. 39, 21–24.
Lu, M. M. D., De Silva, D. M. R., Peralta, E. K., Fajardo, A. N. & Peralta, M. M. (2015). Effects of nanosilica Powder from rice hull ash on seed germination of tomato (Lycopersicon esculentum). Applied Res. Develop., 5, 11- 22.
Ma, X., Zhou, B., Gao, W., Qu, Y., Wang, L., Wang, Z. & Zhu, Y. (2012). A recyclable method for production of pure silica from rice hull ash. Powder Technol., 217, 497–501
Marmiroli, M., Pigoni, V., Savo-Sardaro, M. L. & Marmiroli, N. (2014). The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ. Exp. Bot., 99, 9–17.
Mauromicale, G. & Licandro, P. (2002). Salinity and temperature effects on germination, emergence and seedling growth of globe artichoke. Agronomie, 22, 443– 450.
Mourhly, A., Jhilal, F., El Hamidi, A., Halim, M. & Arsalane, S. (2019). Highly efficient production of mesoporous nano-silica from unconventional resource: process optimization using a central composite design. Microchem. J., 145, 139–145.
Nair, R., Poulose, A.C. & Nagaoka, Y. (2011). FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolables for plants. J. Fluoresc., 21, 2057–2068.
Nayak, P. & Datta, A. (2021). Synthesis of SiO2-Nanoparticles from Rice Husk Ash and its Comparison with Commercial Amorphous Silica through Material Characterization. Silicon, 13, 1209–1214. https://doi.org/10.10 07/s12633-020-00509-y
Patil, A. A., Pawar, R. B. & Pharande A. L. 2018. Economic potential of silicon sources for sustainable rice production. Journal of Pharmacognosy and Phytochemistry, 7(3): 1141–1144.
Rahman, M. F., Ghosal, A., Alam, M. F. & Kabir, A. H. (2017). Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol. Environ. Saf., 135, 165–172.
Rambo, M. K. D., Cardoso, A. L., Bevilaqua, D. B., Rizzetti, T. M., Ramos, L. A., Korndörfer, G. H. & Martins, A. F. (2011). Silica from rice husk ash as an additive for rice plant. J. Agron., 10 (3), 99–104.
Ranal, M. A. & Santana, D. G. (2006). How and why to measure the germination process? Revista Brasil Bot., 29, 1-11.
Rizwan, M., Meunier, J. D., Miche, H. & Keller, C. (2012). Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J. Hazard Mater, 209, 326–334.
Sabaghnia, N. & Janmohammadi, M. (2014). Effect of nanosilicon particles application on salinity tolerance in early growth of some lentil genotypes. Annal UMCS Biol., 69 (2), 39–55.
Sampath, S., Isdebski, T., Jenkins, J. E., Ayon, J. V., Henning, R. W., Orgel, J. P. R. O., Antipoa, O. & Yarger, J. L. (2012). X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks. Soft Matter, 8, 6713–6722.
Shi, Y. (2014). Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol. Biochem., 78, 27–36.
Sun, Y. K. (2020). Regulating effect of exogenous silicon on soil fertility in paddy fields. J. Northeast Agric. Univ. (Engl. Ed). 27(02), 33–36.
Sun Yankun, Xu Jiaqi, Miao Xiangyang, Lin Xuesong, Liu Wanzhen, & Ren Hongyu. (2021). Effects of exogenous silicon on maize seed germination and seedling growth. Scientific Reports. 11. 10.1038/s41598-020-79723-y.
Suriyaprabha, R., Karunakaran G. & Yuvakkumar, R. (2012). Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr. Nanosci., 8, 1–7.
Swapna, G. Ganiga, Jadesha, & Mahadevu, P. (2020). Sweet Corn -A Future Healthy Human Nutrition Food. International Journal of Current Microbiology and Applied Sciences. 9.3859-3865. 10.20546/ijcmas.2020.907.452.
Yalc, N. & Sevinc, V. (2001). Studies on silica obtained from rice husk. Ceram Int., 27, 219-224
Yan, G. C., Nikolic, M., Ye, M. J., Xiao, Z. X. & Liang, Y. C. (2018). Silicon acquisition and accumulation in plant and its significance for agriculture. J. Integr. Agric., 17 (10), 2138–2150.
Yuvakkumar, R., Elango, V. & Rajendran, V. (2011). Influence of nanosilica powder on the growth of maize crop (Zea Mays L.). Inter Green Nanotechnol., 3, 180–190.
Zhu, Y. & Gong, H. (2013). Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev., 34 (2), 455–472.
Citation Format
How to Cite
Influence of rice husk ash-derived silica nanoparticles on sweetcorn (Zea mays L. sachharata) seed germination. (2023). Journal of Applied and Natural Science, 15(3), 1299-1307. https://doi.org/10.31018/jans.v15i3.4893
More Citation Formats:
Research Articles

How to Cite

Influence of rice husk ash-derived silica nanoparticles on sweetcorn (Zea mays L. sachharata) seed germination. (2023). Journal of Applied and Natural Science, 15(3), 1299-1307. https://doi.org/10.31018/jans.v15i3.4893