M. Venkatasami P. Rajkumar M. Balakrishnan C. Indu Rani D. Amirtham A. Lakshmanan


Cissus quadrangularis is an extensively utilized medicinal plant in India which has numerous health benefits. Hence, the drying kinetics of Cissus was studied using fluidized bed dryer to identify suitable drying conditions and to understand moisture removal and its connection to process variables.  The present research aimed to determine a suitable drying model of fluidized bed drying of Cissus quadrangularis Linn., determine the effective moisture diffusivity of the drying process and the activation energy, and investigate the effects of temperatures on the drying kinetics of Cissus. The drying experiments were conducted at three different air temperatures (40, 50 and 60 ºC), bed thickness of 5 cm, constant air velocity of 8 m/s and 0.5-1 cm length Cissus samples. The experimental drying data was fit into thirteen thin layer models and the best model describing the drying of Cissus was selected based on the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ2).  The drying process occurred in a falling rate period for all the drying air temperatures and a constant rate period was not observed. Among all the thirteen models tested, approximation of diffusion was found to explain the thin layer drying behavior of C. quadrangularis accurately. The effective moisture diffusivity for Cissus was in the range of 1.54 - 3.12x 10-10 m2/s  and the activation energy was 30.76 kJ/ mole, respectively.  Hence, fluidized bed drying is more effective for convective drying of Cissus and the drying models are useful for selecting the best operational condition for fluidized bed dryer and design of an equipment.




Activation energy, Cissus quadrangularis, Drying kinetics, Effective diffusivity, Fluidized bed drying

Akpinar, Ebru Kavak, Bicer, Yasar & Yildiz, Cengiz. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59(1), 99-104. doi: https://doi.org/10.1016/S0260-8774(02)00425-9
Aral, S. & Bese, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem, 210, 577-584. doi: 10.1016/j.foodchem.2016.04.128
Azizi, MAJID, Rahmati, M, Ebadi, T. & Hasanzadeh Khayyat, M. (2009). The effects of different drying methods on weight loss rate, essential oil and chamazolene contents of chamomile (Matricaria recutita) flowers. Iranian Journal of Medicinal and Aromatic Plants, 25(2), 182-192. doi: https://doi.org/10.22092/ijmapr.2009.7239
Bafna, P. S., Patil, P. H., Maru, S. K. & Mutha, R. E. (2021). Cissus quadrangularis L: A comprehensive multidisciplinary review. J Ethnopharmacol, 279, 114355. doi: 10.1016/j.jep.2021.114355
Belessiotis, V, & Delyannis, E. (2011). Solar drying. Solar energy, 85(8), 1665-1691. doi: https://doi.org/10.1016/j.solener.2009.10.001
Brovelli, EA, Li, Y. & Chui, K. (2003). Image analysis reflects drying conditions of Echinacea purpurea Herb. Journal of herbs, spices & medicinal plants, 10(2), 19-24. doi: https://doi.org/10.1300/J044v10n02_03
Bruce, David M. (1985). Exposed-layer barley drying: Three models fitted to new data up to 150 C. Journal of Agricultural Engineering Research, 32(4), 337-348. doi: https://doi.org/10.1016/0021-8634(85)90098-8
Chen, Ho-Hsien, Hernandez, Carlos Eduardo & Huang, Tzou-Chi. (2005). A study of the drying effect on lemon slices using a closed-type solar dryer. Solar Energy, 78(1), 97-103. doi: https://doi.org/10.1016/j.solener.20 04.06.011
Crank, John. (1975). The mathematics of diffusion: Clarendon Press, Oxford.
Darıcı, Selçuk & Şen, Soner (2015). Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat and Mass Transfer, 51, 1167-1176. doi: https://doi.org/10.1007/s00231-014-1487-x
Doymaz, Ibrahim (2004). Convective air drying characteristics of thin layer carrots. Journal of food engineering, 61(3), 359-364. doi: https://doi.org/10.1016/S0260-8774(03)00142-0
Doymaz, İbrahim (2005). Drying behaviour of green beans. Journal of food Engineering, 69(2), 161-165. doi: https://doi.org/10.1016/j.jfoodeng.2004.08.009
Doymaz, İbrahim & Pala, Mehmet (2003). The thin-layer drying characteristics of corn. Journal of food engineering, 60(2), 125-130. doi: https://doi.org/10.1016/S0260-8774(03)00025-6
Eldeen, YIS, Biaisdell, Jl & Hamdy, MY. (1980). A model for ear corn drying. Trans. ASAE, 23, 1261-1271. doi: doi: 10.13031/2013.34757
Elmas, Feyza, Varhan, Emine & Koç, Mehmet. (2019). Drying characteristics of jujube (Zizyphus jujuba) slices in a hot air dryer and physicochemical properties of jujube powder. Journal of Food Measurement and Characterization, 13, 70-86. doi: https://doi.org/10.1007/s11694-018-9920-3
Ertekin, O. & Yaldiz, C. (2001). Thin layer solar drying of some different vegetables. Drying Technology, 19(3), 583-596. doi: https://doi.org/10.1081/DRT-100103936
Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of the ASAE, 17(6), 1167-1168. doi: doi: 10.13031/2013.37052
Hendreson, S. M. & Pabis, S. (1961). Grain drying theory. I. Temperature effect on drying coefficients. Journal of Agricultural Engineering Research, 6, 169-174.
Jongyingcharoen, Jiraporn Sripinyowanich (2020). Drying kinetics and quality of Cissus quadrangularis Linn. dried by convective hot air. Agricultural Engineering International: CIGR Journal, 22(3), 230-240. doi: http://dx.doi.org/10.1051/matecconf/201819203041
Karathanos, Vaios T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4), 337-344. doi: https://doi.org/10.1016/S0260-8774(98)00132-0
Kasi, Sofiya Dayana, Ramasamy, Jothi Mani, Nagaraj, Dharmalingam, Santiyagu, Valanarasu & Ponraj, Joice Sophia. (2021). Biogenic synthesis of copper oxide nanoparticles using leaf extracts of Cissus quadrangularis and Piper betle and its antibacterial effects. Micro & Nano Letters, 16(8), 419-424. doi: https://doi.org/10.1049/mna2.12066
Kassem, AS. (1998). Comparative studies on thin layer drying models for wheat. Paper presented at the 13th international congress on agricultural engineering.
Kassem, A. S., Shokr, A. Z., El-Mahdy, A. R., Aboukarima, A. M. & Hamed, EY. (2011). Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences, 10(1), 33-40. doi: https://doi.org/10.1016/j.jssas.2010.05.001
Kathirvel, K, Naik, K Ramachandra, Gariepy, Yvan, Orsat, Valerie & Raghavan, GSV. (2006). Microwave drying-a promising alternative for the herb processing industry. Paper presented at the 2006 ASAE Annual Meeting.
Kaur, Ritesh & Malik, CP. (2010). Cissus quadrangularis L-Its botany, chemistry and medicinal importance: A Review. Nutrition Business Journal, 5, 3.3.
Kumar, Ashish (2019). Cissus quadrangularis Linn: a useful Indian medicinal plant. Agriculture & Food: e-Newsletter, 1(09), 212-213.
Midilli, adnan, Kucuk, haydar & Yapar, zİya. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. doi: https://doi.org/10.1081/DRT-120005864
Mohapatra, Debabandya & Rao, P Srinivasa. (2005). A thin layer drying model of parboiled wheat. Journal of food engineering, 66(4), 513-518. doi: https://doi.org/10.1016/j.jfoodeng.2004.04.023
Mujumdar, Arun S. (2006). Principles, classification, and selection of dryers. Handbook of industrial drying, 3, 3-32. doi: http://dx.doi.org/10.1201/9781420017618.pt1
Mujumdar, Arun S. (2001). Transport Properties of Foods. Marcel Dekker Inc. New York. doi: https://doi.org/10.1081/DRT-100107506
Müller, JOACHIM & Heindl, Albert. (2006). Drying of medicinal plants. Frontis, 237-252. doi: http://dx.doi.org/10.1007/1-4020-5449-1_17
Orphanides, Antia, Goulas, Vlasios & Gekas, Vassilis. (2016). Drying technologies: Vehicle to high-quality herbs. Food Engineering Reviews, 8, 164-180. doi: https://doi.org/10.1007/s12393-015-9128-9
Page, Glen E. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers: Purdue University.
Pankey, RD, Draudt, H. N. & Desrosier, NW. (1965). Characterization of the starch of Spirodela polyrrhiza. Journal of Food Science, 30(4), 627-631. doi: https://doi.org/10.1111/j.1365-2621.1965.tb01814.x
Rahimi, Amir & Farrokhi, Elham. (2019). Evaluation of the Effect of Different Drying Methods on Antioxidant and Phytochemical Activity of Essential oil of Origanum vulgare L. subsp. gracile. Eco-phytochemical Journal of Medicinal Plants, 7(3), 15-27.
Sacilik, Kamil, Keskin, Rahmi & Elicin, Ahmet Konuralp (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of food Engineering, 73(3), 231-238. doi: https://doi.org/10.1016/j.jfoodeng.20 05.01.025
Simal, S, Garau, M. C., Femenia, A. & Rosselló, C. (2006). A diffusional model with a moisture-dependent diffusion coefficient. Drying Technology, 24(11), 1365-1372. doi: https://doi.org/10.1080/07373930600952404
Sobukola, Olajide Philip, Dairo, Olawale Usman & Odunewu, Adebayo Victor. (2008). Convective hot air drying of blanched yam slices. International journal of food science & technology, 43(7), 1233-1238. doi: https://doi.org/10.1111/j.1365-2621.2007.01597.x
Tanko, Hakibu, Carrier, Danielle Julie, Duan, Lijun & Clausen, Ed. (2005). Pre-and post-harvest processing of medicinal plants. Plant Genetic Resources, 3(2), 304-313. doi: http://dx.doi.org/10.1079/PGR200569
Thakur, Achal, Jain, Vandana, Hingorani, L. & Laddha, KS. (2009). Phytochemical studies on Cissus quadrangularis Linn. Pharmacognosy Research, 1(4).
Thamkaew, G., Sjoholm, I. & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Crit Rev Food Sci Nutr, 61(11), 1763-1786. doi: 10.1080/10408398.2020.1765309
Toğrul, İnci Türk & Pehlivan, Dursun. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209-216. doi: https://doi.org/10.1016/S0260-8774(02)00065-1
Vega-Mercado, Humberto, Góngora-Nieto, M Marcela & Barbosa-Cánovas, Gustavo V. (2001). Advances in dehydration of foods. Journal of food engineering, 49(4), 271-289. doi: https://doi.org/10.1016/S0260-8774(00)00224-7
Verma, Lalit R, Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301. doi: doi: 10.13031/2013.32245
Wang, C.Y. & Singh, R. P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of American Society of Agricultural Engineers, 11(6), 668-672.
White, G. M., Ross, I. J. & Poneleit, C. G. (1981). Fully-exposed drying of popcorn. Transactions of the ASAE, 24(2), 466-0468. doi: doi: 10.13031/2013.34276
Yang, Wen-Ching (2003). Handbook of Fluidization and Fluid-Particle Systems. MarcelDekker Inc., New York. doi: https://doi.org/10.1201/9780203912744
Zogzas, N. P. Maroulis, Z. B. & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying technology, 14(10), 2225-2253. doi: https://doi.org/10.10 80/07373939608917205
Citation Format
How to Cite
The Drying kinetics of Cissus quadrangularis dried in a Fluidized bed dryer. (2023). Journal of Applied and Natural Science, 15(3), 1237-1244. https://doi.org/10.31018/jans.v15i3.4850
More Citation Formats:
Research Articles

How to Cite

The Drying kinetics of Cissus quadrangularis dried in a Fluidized bed dryer. (2023). Journal of Applied and Natural Science, 15(3), 1237-1244. https://doi.org/10.31018/jans.v15i3.4850