##plugins.themes.bootstrap3.article.main##

Mahadi Danjuma Sani V.D.N. Kumar Abbaraju N.V.S. Venugopal https://orcid.org/0000-0003-0552-1377

Abstract

Synthetic chemical pesticides' nature, mode of action, and persistence have brought about debates regarding whether the end justifies the means. Lambda-cyhalothrin is an important insecticide for farmers and households, with great accessibility and excellent action against pests and disease-carrying insects. Like other pyrethroid pesticides, Lambda-cyhalothrin targets the nervous system of insects or pests. However, its fate in the environment, especially in water and living systems, has made it crucial to explore methods of treating or degrading its residues in the environment. The present study aimed to develop a suitable method for the photocatalytic degradation and removal of Lambda-cyhalothrin (LCY) from wastewater and agricultural runoff. The nanoceria were used under natural solar irradiation without applying any scavenger chemical or buffer. This was synthesized using a simple co-precipitation method using cerium nitrate hexahydrate as a precursor. The synthesized nanoceria were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared spectroscopy (FTIR) and particle size analysis. The average size of the particle was 27 nm. The photocatalytic degradation was conducted in batches with various pesticide concentrations exposed to different amounts of nanoceria. The initial and final concentrations of the LCY at each level were determined using Shimadzu UV spectroscopy. At optimum conditions, nanoceria was found to degrade and remove more than 63% of the initial pesticide concentration. This method can be suitable for degrading and removing pesticide residue from agricultural runoff (at source) and industrial effluents from synthetic pesticide industries.  

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Agricultural runoff, Lambda-cyhalothrin, Nanoceria, Photocatalytic degradation, Wastewater

References
Ahmad, T., Iqbal, J., Bustam, M. A., Zulfiqar, M., Muhammad, N., Al Hajeri, B. M., Irfan, M., Anwaar Asghar, H. M. & Ullah, S. (2020). Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. Journal of Molecular Structure, 1217, 128292. https://doi.org/10.1016/J.MOLSTRUC.2020.128292
Al-Amoudi, W. M. (2018). Toxic effects of Lambda-cyhalothrin, on the rat thyroid: Involvement of oxidative stress and ameliorative effect of ginger extract. Toxicology Reports, 5, 728–736. https://doi.org/10.1016/J.TOXREP.2018.06.005
Al Malahi, N. M., Al Jumaily, M. M., Al-shaibani, E. A. S., Alajmi, R. A., Alkhuriji, A. F., Al-Tamimi, J. & Alhimaidi, A. R. (2022). Ameliorative effect of L-carnitine on lambda-cyhalothrin-induced anatomical and reproductive aberrations in albino mice. Saudi Journal of Biological Sciences, 29(9), 103373. https://doi.org/10.1016/J.SJBS.202 2.103373
Alalibo, K., Patricia, U. A. & Ransome, D. E. (2019). Effects of Lambda Cyhalothrin on the behaviour and histology of gills of Sarotherodon melanotheron in brackish water. Scientific African, 6, e00178. https://doi.org/10.1016/J.SCIAF.2019.E00178
Andronic, L., Lelis, M., Enesca, A. & Karazhanov, S. (2022). Photocatalytic activity of defective black-titanium oxide photocatalysts towards pesticide degradation under UV/VIS irradiation. Surfaces and Interfaces, 32, 102123. https://doi.org/10.1016/J.SURFIN.2022.102123
Aouey, B., Derbali, M., Chtourou, Y., Bouchard, M., Khabir, A., & Fetoui, H. (2017). Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environmental Science and Pollution Research, 24(6), 5841–5856. https://doi.org/10.1007/S11356-016-8323-4/TABLES/6
Aouey, B., Fares, E., Chtourou, Y., Bouchard, M. & Fetoui, H. (2019). Lambda-cyhalothrin exposure alters purine nucleotide hydrolysis and nucleotidase gene expression pattern in platelets and liver of rats. Chemico-Biological Interactions, 311, 108796. https://doi.org/10.1016/J.CBI.2019.108796
Bai, Y., Ruan, X. & van der Hoek, J. P. (2018). Residues of organochlorine pesticides (OCPs) in aquatic environment and risk assessment along Shaying River, China. Environmental Geochemistry and Health, 40(6), 2525–2538. https://doi.org/10.1007/S10653-018-0117-9/TABL ES/5
Barzagan, A. (2022). Photocatalytic Water and Wastewater Treatment. In Photocatalytic Water and Wastewater Treatment (Issue April). https://doi.org/10.2166/9781789061932
Bruckmann, F. S., Schnorr, C., Oviedo, L. R., Knani, S., Silva, L. F. O., Silva, W. L., Dotto, G. L. & Bohn Rhoden, C. R. (2022). Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022, Vol. 27, Page 6261, 27(19), 6261. https://doi.org/10.3390/MOLECULES27196261
Ceuppens, B., Eeraerts, M., Vleugels, T., Cnops, G., Roldan-Ruiz, I., & Smagghe, G. (2015). Effects of dietary lambda-cyhalothrin exposure on bumblebee survival, reproduction, and foraging behavior in laboratory and greenhouse. Journal of Pest Science, 88(4), 777–783. https://doi.org/10.1007/S10340-015-0676-9/FIGURES/1
Chatterjee, A., Bhattacharya, R., Chatterjee, S. & Saha, N. C. (2021a). Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 242, 108943. https://doi.org/10.1016/J.CBPC.2020.108943
Chatterjee, A., Bhattacharya, R., Chatterjee, S. & Saha, N. C. (2021b). λ cyhalothrin induced toxicity and potential attenuation of hematological, biochemical, enzymological and stress biomarkers in Cyprinus carpio L. at environmentally relevant concentrations: A multiple biomarker approach. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 250, 109164. https://doi.org/10.1016/J.CBPC.2021.109164
Ederer, J., Sˇtastn, M., DošekDošek, M., Henych ab, J. & JanošJanoš, P. (2019). Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate. https://doi.org/10.1039/c9ra06575j
Eka Putri, G., Rilda, Y., Syukri, S., Labanni, A. & Arief, S. (2021). Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. Journal of Materials Research and Technology, 15, 2355–2364. https://doi.org/10.1016/J.JMRT.2021.09.075
Farahmandjou, M., Farahmandjou, M., Zarinkamar, M. & Firoozabadi, T. P. (2016). Synthesis of Cerium Oxide (CeO 2 ) nanoparticles using simple CO-precipitation method. Revista Mexicana de Física, 62(October), 496–499. https://www.researchgate.net/publication/308742876
Feynman, R. P. (1959). Plenty of Room at the Bottom. https://web.pa.msu.edu/people/yang/RFeynman_plentySpace.pdf
Goel, P. & Arora, M. (2022). Photocatalytic degradation efficiency of Cu/Cu2O core–shell structured nanoparticles for endosulfan mineralization. Journal of Nanoparticle Research, 24(3), 1–13. https://doi.org/10.1007/S11051-022-05436-0/FIGURES/8
Hannachi, E., Slimani, Y., Nawaz, M., Sivakumar, R., Trabelsi, Z., Vignesh, R., Akhtar, S., Almessiere, M. A., Baykal, A. & Yasin, G. (2022). Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances. Journal of Rare Earths. https://doi.org/10.1016/J.JRE.2022.03.020
He, L. M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Reviews of Environmental Contamination and Toxicology, 195, 71–91. https://doi.org/10.1007/978-0-387-77030-7_3
Henych, J., Šťastný, M., Ederer, J., Němečková, Z., Pogorzelska, A., Tolasz, J., Kormunda, M., Ryšánek, P., Bażanów, B., Stygar, D., Mazanec, K. & Janoš, P. (2022). How the surface chemical properties of nanoceria are related to its enzyme-like, antiviral and degradation activity. Environmental Science: Nano, 9(9), 3485–3501. https://doi.org/10.1039/D2EN00173J
Ibrahim, A. M., Sayed, S. S. M. & Shalash, I. R. A. (2018). Toxicological assessment of lambda-cyhalothrin and acetamiprid insecticides formulated mixture on hatchability rate, histological aspects, and protein electrophoretic pattern of Biomphalaria alexandrina (Ehrenberg, 1831) snails. Environmental Science and Pollution Research, 25(32), 32582–32590. https://doi.org/10.1007/S11356-018-3238-X/TABLES/3
Irfan, F., Tanveer, M. U., Moiz, M. A., Husain, S. W. & Ramzan, M. (2022). TiO2 as an effective photocatalyst mechanisms, applications, and dopants: a review. The European Physical Journal B 2022 95:11, 95(11), 1–13. https://doi.org/10.1140/EPJB/S10051-022-00440-8
Janoš, P., Ederer, J., Štastný, M., Tolasz, J. & Henych, J. (2022). Degradation of parathion methyl by reactive sorption on the cerium oxide surface: The effect of solvent on the degradation efficiency. Arabian Journal of Chemistry, 15(6). https://doi.org/10.1016/j.arabjc.2022.103852
Janoš, P., Kurá, P., Ederer, J., Š, M., Vrtoch, L., PšeniIka, M., Henych, J., Mazanec, K. & Skoumal, M. (2015). Recovery of Cerium Dioxide from Spent Glass-Polishing Slurry and Its Utilization as a Reactive Sorbent for Fast Degradation of Toxic Organophosphates. https://doi.org/10.1155/2015/241421
Janos, P., Kuran, P., Kormunda, M., Stengl, V., Grygar, T. M., Dosek, M., Stastny, M., Ederer, J., Pilarova, V. & Vrtoch, L. (2014). Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. Journal of Rare Earths, 32(4), 360–370. https://doi.org/10.1016/S1002-0721(14)60079-X
Jayakumar, G., Irudayaraj, A. A. & Raj, A. D. (2019). Investigation on the synthesis and photocatalytic activity of activated carbon–cerium oxide (AC–CeO2) nanocomposite. Applied Physics A: Materials Science and Processing, 125(11), 1–9. https://doi.org/10.1007/S00339-019-3044-4/FIGURES/9
Kashyap, K., Khan, F., Verma, D. K. & Agrawal, S. (2022). Effective removal of uranium from aqueous solution by using cerium oxide nanoparticles derived from citrus limon peel extract. Journal of Radioanalytical and Nuclear Chemistry, 1–11. https://doi.org/10.1007/S10967-021-08138-4/TABLES/3
Kaur, A., Bajaj, B. & Dhiraj Sud (2022). Biopolymer xanthan gum templated facile synthesis of reusable cerium oxide nanoparticles as catalyst for reduction of nitroaromatic compounds. Journal of the Iranian Chemical Society 2022, 1–17. https://doi.org/10.1007/S13738-022-02616-6
Keerthana, M., Malini, T. P. & Sangavi, R. (2021). Efficiency of cerium oxide (CeO2) nano-catalyst in degrading the toxic and persistent 4-nitrophenol in aqueous solution. Materials Today: Proceedings, 50, 375–379. https://doi.org/10.1016/j.matpr.2021.10.082
Keerthana, M., Malini, T. P. & Sangavi, R. (2022). Efficiency of cerium oxide (CeO2) nano-catalyst in degrading the toxic and persistent 4-nitrophenol in aqueous solution. Materials Today: Proceedings, 50, 375–379. https://doi.org/10.1016/J.MATPR.2021.10.082
Kermani, G., Karimi, E. & Tabrizi, M. H. (2022). Hybrid Nanoarchitectonics of Chitosan-Cerium Oxide Nanoparticles for Anticancer Potentials. Journal of Inorganic and Organometallic Polymers and Materials, 32(7), 2591–2599. https://doi.org/10.1007/S10904-022-02329-6/FIGUR ES/6
Kouser, S., Hezam, A., Byrappa, K. & Khanum, S. A. (2021). Sunlight-assisted synthesis of cerium (IV) oxide nanostructure with enhanced photocatalytic activity. Optik, 245, 167236. https://doi.org/10.1016/J.IJLEO.202 1.167236
Li, S., Hu, S., Jiang, W., Liu, Y., Zhou, Y., Liu, J. & Wang, Z. (2018). Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. Journal of Colloid and Interface Science, 530, 171–178. https://doi.org/10.1016/J.JCIS.2018.06.084
Liu, P. Y., Li, B., Liu, H. D. & Tian, L. (2014). Photochemical behavior of fenpropathrin and λ-cyhalothrin in solution. Environmental Science and Pollution Research, 21(3), 1993–2001. https://doi.org/10.1007/S11356-013-2119-6/FIGURES/7
Miri, A., Beiki, H., Najafidoust, A., Khatami, M. & Sarani, M. (2021). Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess and Biosystems Engineering, 44(9), 1891–1899. https://doi.org/10.1007/S00449-021-02569-9/FIGURES/10
Mwila, K., Burton, M. H., Van Dyk, J. S. & Pletschke, B. I. (2013). The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environmental Monitoring and Assessment, 185(3), 2315–2327. https://doi.org/10.1007/S10661-012-2711-0/TABL ES/4
Nicolopoulou-Stamati, P. & , Sotirios Maipas, Chrysanthi Kotampasi, P. S. and L. H. (2016). Chemical Pesticides and Human Health : The Urgent Need for a New Concept in Agriculture. 4(July), 1–8. https://doi.org/10.3389/fpubh.2016.00148
Pradeepa, E. & Nayaka, Y. A. (2022). Cerium oxide nanoparticles via gel-combustion for electrochemical investigation of pantoprazole in the presence of epinephrine. Journal of Materials Science: Materials in Electronics, 33(23), 18374–18388. https://doi.org/10.1007/S10854-022-08692-X/TABLES/2
Pujar, M. S., Hunagund, S. M., Barretto, D. A., Desai, V. R., Patil, S., Vootla, S. K. & Sidarai, A. H. (2020). Synthesis of cerium-oxide NPs and their surface morphology effect on biological activities. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/S12034-019-1962-6/FIGURES/8
Salerno, A., Devers, T., Bolzinger, M. A., Pelletier, J., Josse, D. & Briançon, S. (2017). In vitro skin decontamination of the organophosphorus pesticide Paraoxon with nanometric cerium oxide CeO2. Chemico-Biological Interactions, 267, 57–66. https://doi.org/10.1016/J.CBI.20 16.04.035
Sherrif SS, Madadi V, M. J. & K. G. (2017). Adsorption of Lambda Cyhalothrin on to Athi River Sediments: Apparent Thermodynamic Properties. Adsorption of Lambda Cyhalothrin on to Athi River Sediments: Apparent Thermodynamic Properties. Mod Chem Appl, 5(2), 213. https://doi.org/10.4172/2329-6798.1000213
Sraw, A., Kaur, T., Thakur, I., Verma, A., Wanchoo, R. K. & Toor, A. P. (2022). Photocatalytic degradation of pesticide monocrotophos in water using W-TiO2 in slurry and fixed bed recirculating reactor. Journal of Molecular Structure, 1265, 133392. https://doi.org/10.1016/J.MOLSTR UC.2022.133392
Voltz, M., Guibaud, G., Dagès, C., Douzals, J. P., Guibal, R., Grimbuhler, S., Grünberger, O., Lissalde, S., Mazella, N., Samouëlian, A. & Simon, S. (2021). Pesticide and agro-ecological transition: assessing the environmental and human impacts of pesticides and limiting their use. Environmental Science and Pollution Research 2021 29:1, 29(1), 1–5. https://doi.org/10.1007/S11356-021-17416-3
Zhang, Y., Qin, P., Lu, S., Liu, X., Zhai, J., Xu, J., Wang, Y., Zhang, G., Liu, X. & Wan, Z. (2021). Occurrence and risk evaluation of organophosphorus pesticides in typical water bodies of Beijing, China. Environmental Science and Pollution Research, 28(2), 1454–1463. https://doi.org/10.1007/S11356-020-10288-Z/TABLES/4
Section
Research Articles

How to Cite

Photocatalytic degradation and removal of type II pyrethroid pesticide (lambda-cyhalothrin) residue from wastewater using nanoceria for agricultural runoff application. (2023). Journal of Applied and Natural Science, 15(3), 1219-1229. https://doi.org/10.31018/jans.v15i3.4809