##plugins.themes.bootstrap3.article.main##

Shraddha Mahajan https://orcid.org/0009-0004-5338-456X Shailesh Singh https://orcid.org/0000-0003-3043-1058 Himanshi Dwivedi https://orcid.org/0009-0000-0321-8417

Abstract

Nanomaterials, as a source of plant nutrients, play a significant role in cellular metabolism and nutrients uptake by plants, so they have the potential to improve the growth and productivity of Capsicum. A replicated field trial was carried out in 3 x 3 factors Randomized Block Design (RBD) with two factors viz., micronutrients (Cu, B and Mn) and nanomaterials (nano-Fe, nano-Zn and nano-Mg) applied at the rate of 1000 ppm to explore efficacy of nanomaterials and micronutrient for enhancing productivity of Capsicum (Capsicum annuum L.) var. Rani. The layout of experimental area was designed to accommodate 9 treatments (3 x 3) and a control (without treating with micronutrients and nanomaterials). Inside the naturally ventilated polyhouse, the raised beds (height-30 cm, length-50 m, width-90 cm and bed spacing-60 cm) were prepared for the transplanting capsicum seedlings. Application of nano-Zn and/or nano-Fe @ 1000 ppm in combination with borax and/or CuSO4 @ 1000 ppm was significant (p<0.05) for improving various plant growth and productivity parameters of Capsicum. The combined application of nano-Zn with borax or CuSO4 and nano-Fe with borax or CuSO4 (@ 1000 ppm each) was the effective approach for improvement in plant height, number of leaves, number of flowers, number of fruits, yield plant-1 and estimated yield hectare-1. The experimental findings of the present study confirm the necessities of nanomaterials as a nutrient source for enhancing capsicum's productivity to achieve food and nutritional security and promote sustainable agriculture, inclusive and sustainable economic growth of the farming community.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Boron, Capsicum, Copper, nano-Fe, nano-Zn, sustainable crop productivity

References
Abou Seeda, M. A., Abou El-Nour, E. A. A., Yassen, A. A. & Hammad, S. A. (2021). Boron, structure, functions and its interaction with nutrients in plant physiology. A review. Middle East J. Agric. Res. 10(01). https://doi.org/10.36632/mejar/2021.10.1.9
Adhikari T. (2019). Magnesium Oxide Nano Particles Effects on utilization of soil Phosphorus by Maize (Zea mays L.) Plant. Int. J. Curr. Microbiol. App. Sci., 8(10), 410-419. https://doi.org/10.20546/ijcmas.2019.810.043
Agarwal, A. (2018). Growing Environments and Micronutrients Application Influence Fruit and Seed Yield of Capsicum (Capsicum Annum). Nutri Food Sci Int J., 555652. https://doi.org/10.19080/NFSIJ.2018.05.555652.
Ahmed, M. A. & Abdelkader, M. A. (2020). Enhancing growth, yield components and chemical constituents of chilli (Capsicum annuum L.) plants by using different NPK fertilization levels and nano-micronutrients rates. Asian J. Soil Sci. Plant Nutr., 17-29. https://doi.org/10.9734/AJSSPN/2020/v6i230083
Al Jabri, H., Saleem, M. H., Rizwan, M., Hussain, I., Usman, K. & Alsafran, M. (2022). Zinc oxide nanoparticles and their biosynthesis: overview. Life, 12(4), 594. https://doi.org/10.3390/life12040594
Ali, S., Mehmood, A. & Khan, N. (2021). Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J. Nanomater, 1-17. https://doi.org/10.1155/2021/6677616
Amiri, A., Baninasab, B., Ghobadi, C. & Khoshgoftarmanesh, A. H. (2016). Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress. Photosynthetica, 54, 267-274. https://doi.org/10.1007/s11099-016-0078-0
Batool, F., Iqbal, M. S., Khan, S. U. D., Khan, J., Ahmed, B. & Qadir, M. I. (2021). Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Scientific Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-01374-4
Du, W., Pan, Z. Y., Hussain, S. B., Han, Z. X., Peng, S. A. & Liu, Y. Z. (2020). Foliar supplied boron can be transported to roots as a boron-sucrose complex via phloem in citrus trees. Frontiers in Plant Science, 11, 250. https://doi.org/10.3389/fpls.2020.00250
El-Gioushy, S. F., Ding, Z., Bahloul, A. M., Gawish, M. S., Abou El Ghit, H. M., Abdelaziz, A. M., ... & Zewail, R. M. (2021). Foliar application of nano, chelated, and conventional iron forms enhanced growth, nutritional status, fruiting aspects, and fruit quality of washington navel orange trees (Citrus sinensis L. Osbeck). Plants, 10(12), 2577. https://doi.org/10.3390/plants10122577
Faizan, M., Faraz, A. & Hayat, S. (2020). Effective use of zinc oxide nanoparticles through root dipping on the performance of growth, quality, photosynthesis and antioxidant system in tomato. Journal of Plant Biochemistry and Biotechnology, 29, 553-567. https://doi.org/10.1007/s13562-019-00525-z
Fatima, F., Hashim, A. & Anees, S. (2021). Efficacy of nanoparticles as nanofertilizer production: a review. Environ. Sci. Pollut. Res., 28, 1292–1303. https://doi.org/10.1007/s11356-020-11218-9
García-López, J. I., Niño-Medina, G., Olivares-Sáenz, E., Lira-Saldivar, R. H., Barriga-Castro, E. D., Vázquez-Alvarado, R., ... & Zavala-García, F. (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants, 8(8), 254. https://doi.org/10.3390/plants8080254
Ghani, M. I., Saleem, S., Rather, S. A., Rehmani, M. S., Alamri, S., Rajput, V. D., ... & Liu, M. (2022). Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 289, 133202. https://doi.org/10.1016/j.chemosphere.2021.133202
Haleema, B., Rab, A. & Hussain, S. A. (2018). Effect of Calcium, Boron and Zinc Foliar Application on Growth and Fruit Production of Tomato. Sarhad Journal of Agriculture, 34(1), 19-30. http://dx.doi.org/10.17582/journal.sja/2018/34.1.19.30
Khan, M. M. H., Ahmed, N., Ghafoor, U., Ali, M., Ali, M. A., Irfan, M., ... & Datta, R. (2022a). Synchronization of Boron application methods and rates is environmentally friendly approach to improve quality attributes of Mangifera indica L. On sustainable basis. Saudi Journal of Biological Sciences, 29(3), 1869-1880. https://doi.org/10.1016/j.sjbs.2021.10.036
Khan, M. N., Rab, A., Khan, M. W., ud Din, I., Khan, M. A., Khan, M. A. & Ahmad, M. (2022b). 15. Effect of zinc and boron on the growth and yield of chilli under the agro climatic condition of Swat. Pure and Applied Biology (PAB), 11(3), 835-842. http://dx.doi.org/10.19045/bspab.2022.110084
Kumar, A., Singh, I. K., Mishra, R., Singh, A., Ramawat, N. & Singh, A. (2021). The role of zinc oxide nanoparticles in plants: A critical appraisal. Nanomaterial Biointeractions at the Cellular, Organismal and System Levels, 249-267. https://doi.org/10.1007/978-3-030-65792-5_10
Kumar, B., Sarkar, N. C., Maity, S. & Maiti, R. (2019). Effect of different levels of sulphur and boron on the growth and yield of sesame under red-laterite soils. Research on Crops, 20(3), 515-524. https://doi.org/10.31830/2348-7542.2019.074
Kumar, V., Pandita, S., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P., ... & Setia, R. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262, 127810. https://doi.org/10.1016/j.chemosphere.2020.127810
Migocka, M. & Malas, K. (2018). Plant responses to copper: molecular and regulatory mechanisms of copper uptake, distribution and accumulation in plants. In Plant micronutrient use efficiency (pp. 71-86). Academic Press. https://doi.org/10.1016/B978-0-12-812104-7.00005-8
Mir, A. R., Pichtel, J. & Hayat, S. (2021). Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals, 34(4), 737-759. https://doi.org/10.1007/s10534-021-00306-z
Mondal, T., Sarkar, T., Alam, M., Sarkar, S. K., Rathod, K. H. & Bauri, F. K. (2023). Effect of foliar application of micronutrients on plant growth, yield and fruit quality of Thai guava (Psidium guajava L.). J. Crop Weed, 19(1), 88-94. https://doi.org/10.22271/09746315.2023.v19.i1.1665
Padmanabhan, P., Cheema, A. & Paliyath, G. (2016). Solanaceous Fruits Including Tomato, Eggplant, and Peppers. In Encyclopedia of Food and Health (pp. 24-32). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00696-6
Pietrini, F., Carnevale, M., Beni, C., Zacchini, M., Gallucci, F. & Santangelo, E. (2019). Effect of different copper levels on growth and morpho-physiological parameters in giant reed (Arundo donax L.) in semi-hydroponic mesocosm experiment. Water, 11(9), 1837. https://doi.org/10.3390/w11091837
Poudel, N., Baral, P., Neupane, M., Shrestha, S. M., Shrestha, A. K. & Bhatta, S. (2022). Effect of Boron on Growth and Yield Parameters of Cauliflower (Brassica oleracea var botrytis cv Snow Mystique) in Terhathum, Nepal. International Journal of Applied Sciences and Biotechnology, 10(1), 41-49. https://doi.org/10.3126/ijasbt.v10i1.44158
Pramanik, K., Mohapatra, P. P., Pradhan, J., Acharya, L. K. & Jena, C. (2020). Factors Influencing Performance of Capsicum under Protected Cultivation: A Review. International Journal of Environment and Climate, 10, 572-588. https://doi.org/10.9734/IJECC/2020/v10i1230339
Salim, B. B. M., El-Gawad, A., Gamal, H., El-Yazied, A. & Hikal, M. (2019). Effect of calcium and boron on growth, fruit setting and yield of hot pepper (Capsicum annuum L.). Egyptian Journal of Horticulture, 46(1), 53-62. https://doi.org/10.21608/ejoh.2019.6279.1087
Sánchez-Pérez, D. M., Flores-Loyola, E., Márquez-Guerrero, S. Y., Galindo-Guzman, M. & Marszalek, J. E. (2023). Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Larrea tridentata Extract and Their Impact on the In-Vitro Germination and Seedling Growth of Capsicum annuum. Sustainability, 15(4), 3080. https://doi.org/10.3390/su15043080
Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., ... & Bie, Z. (2018). Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. International journal of molecular sciences, 19(7), 1856. https://doi.org/10.3390/ijms19 071856
Tawfik, M. M., Mohamed, M. H., Sadak, M. S. & Thalooth, A. T. (2021). Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletin of the National Research Centre, 45(1), 1-9. https://doi.org/10.1186/s42269-021-00624-9
Wang, J., Moeen-ud-din, M., & Yang, S. (2021). Dose-dependent responses of Arabidopsis thaliana to zinc are mediated by auxin homeostasis and transport. Environmental and Experimental Botany, 189, 104554. https://doi.org/10.1016/j.envexpbot.2021.104554
Yoon, H., Kang, Y. G., Chang, Y. S. & Kim, J. H. (2019). Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana. Nanomaterials, 9(11), 1543. https://doi.org/10.3390/nano9111543
Yuan, J., Chen, Y., Li, H., Lu, J., Zhao, H., Liu, M., ... & Glushchenko, N. N. (2018). New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Scientific reports, 8(1), 3228. https://doi.org/10.1038/s41598-017-18055-w
Section
Research Articles

How to Cite

Efficacy of nanomaterials for sustainable crop productivity of Capsicum (Capsicum annuum L.) var. Rani under naturally ventilated polyhouse. (2023). Journal of Applied and Natural Science, 15(3), 1282-1291. https://doi.org/10.31018/jans.v15i3.4805