##plugins.themes.bootstrap3.article.main##

Abinaya Sezhiyan Ashok Subiramaniyan Chandrasekaran Perumal Ashokkumar Natarajan Rajeshkumar Arumugam Kuttimani Ramalingam Navin Kumar Chinnaraju

Abstract

With the increasing population, by 2030, the population of India will have seen an unprecedented rise of 1.43 billion and require food grains of around 311 million tones. Of the total area, nearly 5% of the area in India is affected by soil salinity. It is said that about 10% of soil is salinized every year. At this rate, 50% of the land area will be salinized by 2050.These repercussions challenge us to expand the area under cultivation or to increase the yield per unit area to maintain food security and sustainability. In order to meet the growing demands of the increased population, two major approaches can be met. Firstly, the available area under cultivation must be increased, which can be done by the reclamation of various problematic soils and making them suitable for cultivation. The second and holistic approach is to employ various biotechnological and breeding aspects in the development of resistant varieties surviving the harsh and unfavourable environment and showing no subsequent reduction in the yield parameters. For this, one must understand the various physiological aspects of tolerance for screening the elite varieties suited for a particular ecosystem or environment. Thus, the present study vividly explains the various physiological aspects of salt stress on rice. Employing these techniques, one can screen superior genotypes resistant to various stresses, thus keeping the Malthus predictions at bay.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Genotypes, Population, Sustainability, Salt stress

References
Abbas, G., Saqib, M., Akhtar, J. &Haq, M. A. U. (2015). Interactive effects of salinity and iron deficiency on different rice genotypes. Journal of Plant Nutrition and Soil Science, 178(2), 306-311. https://doi.org/10.1002/jpln.201400358
Abdallah, M. S., Abdelgawad, Z. A. & El-Bassiouny, H. M. S. (2016). Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South African Journal of Botany, 103, 275-282. https://doi.org/10.1016/j.sajb.2015.09.019
Ansari, M. I., Jalil, S. U., Ansari, S. A. & Hasanuzzaman, M. (2021). GABA shunt: a key-player in mitigation of ROS during stress. Plant Growth Regulation, 94, 131-149. https://doi.org/10.1007/s10725-021-00710-y
Cha-Um, S., Charoenpanich, A., Roytrakul, S. & Kirdmanee, C. (2009). Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Actaphysiologiaeplantarum, 31, 477-486. DOI 10.1007/s11738-008-0256-1
Chen, G., Zheng, D., Feng, N., Zhou, H., Mu, D., Zhao, L., … & Huang, A. (2022). Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice. Scientific Reports, 12(1), 1-26. https://doi.org/10.1038/s41598-022-11408-0
Chen, H. & Jiang, J. G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18(NA), 309-319. https://doi.org/10.1139/A10-014
Choudhary, S., Wani, K. I., Naeem, M., Khan, M. M. A., &Aftab, T. (2023). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: Polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation, 42(2), 539-553. https://doi.org/10.1007/s00344-022-10584-7
Dai, L., Li, P., Li, Q., Leng, Y., Zeng, D. & Qian, Q. (2022). Integrated multi-omics perspective to strengthen the understanding of salt tolerance in rice. International Journal of Molecular Sciences, 23(9), 5236. https://doi.org/10.3390/ijms23095236
Diédhiou, C. J. & Golldack, D. (2006). Salt-dependent regulation of chloride channel transcripts in rice. Plant Science, 170(4), 793-800. https://doi.org/10.1016/j.plantsci.2005.11.014
Ghosh, A., Mustafiz, A., Pareek, A., Sopory, S. K., &Singla‐Pareek, S. L. (2022). Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. PhysiologiaPlantarum, 174(3), e13693. https://doi.org/10.1111/ppl.13693
Gill, S. S., &Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930. DOI:10.1016/j.plaphy.2010.08.016
Gratão, P. L., Polle, A., Lea, P. J., &Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional plant biology, 32(6), 481-494. https://doi.org/10.1071/FP05016
Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384
Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., &Mundree, S. (2016). Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 6(4), 54. https://doi.org/10.3390/agronomy6040054
Hossen, M. S., Karim, M. F., Fujita, M., Bhuyan, M. B., Nahar, K., Masud, A. A. C., … &Hasanuzzaman, M. (2022). Comparative physiology of indica and japonica rice under salinity and drought stress: An intrinsic study on osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification. Stresses, 2(2), 156-178. https://doi.org/10.3390/stresses2020012
Hussain, M., Park, H. W., Farooq, M., Jabran, K., & Lee, D. J. (2013). Morphological and Physiological Basis of Salt Resistance in Different Rice Genotypes. International Journal of Agriculture & Biology, 15(1).
Hussain, S., Zhu, C., Huang, J., Huang, J., Zhu, L., Cao, X., & Zhang, J. (2020). Ethylene response of salt stressed rice seedlings following Ethephon and 1-methylcyclopropene seed priming. Plant Growth Regulation, 92(2), 219-231. https://doi.org/10.1007/s10725-020-00632-1
Islam, F., Wang, J., Farooq, M. A., Yang, C., Jan, M., Mwamba, T. M., … & Zhou, W. (2019). Rice responses and tolerance to salt stress: deciphering the physiological and molecular mechanisms of salinity adaptation. In Advances in rice research for abiotic stress tolerance (pp. 791-819). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814332-2.00040-X
Joseph, B., Jini, D., & Sujatha, S. (2010). Biological and physiological perspectives of specificity in abiotic salt stress response from various rice plants. Asian J. Agric. Sci, 2(3), 99-105.
Kader, M. A., & Lindberg, S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. Plant signaling & behavior, 5(3), 233-238. https://doi.org/10.4161/psb.5.3.10740
Kalaiyarasi, R., Kuralarasan, V., George, J., Praveen, N. M., &Manikandan, V. (2019). Salinity tolerance screening in local rice varieties of Tamil Nadu and Kerala. IJCS, 7(4), 1667-1671.
Kerchev, P. I., & Van Breusegem, F. (2022). Improving oxidative stress resilience in plants. The Plant Journal, 109(2), 359-372. https://doi.org/10.1111/tpj.15493
Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781
Liang, C., Zheng, G., Li, W., Wang, Y., Hu, B., Wang, H., … & Chu, C. (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of pineal research, 59(1), 91-101. https://doi.org/10.1111/jpi.12243
Ling, F., Su, Q., Jiang, H., Cui, J., He, X., Wu, Z., … & Zhao, Y. (2020). Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Scientific Reports, 10(1), 6183. https://doi.org/10.1038/s41598-020-63352-6
Liu, S., Liu, W., Lai, J., Liu, Q., Zhang, W., Chen, Z., … & Xiao, Y. (2022). OsGLYI3, a glyoxalase gene expressed in rice seed, contributes to seed longevity and salt stress tolerance. Plant Physiology and Biochemistry, 183, 85-95. https://doi.org/10.1016/j.plaphy.2022.04.028
Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., … & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225. https://doi.org/10.3390/antiox11020225
Mishra, S., Chowrasia, S., &Mondal, T. K. (2022, August). Dhani (Oryzacoarctata): A Wild Relative of Rice is a Potential Source of Coastal Salinity Tolerance Genes Suitable for Rice Breeding. In Transforming Coastal Zone for Sustainable Food and Income Security: Proceedings of the International Symposium of ISCAR on Coastal Agriculture, March 16–19, 2021 (pp. 23-34). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-95618-9_2
Monsur, M. B., Datta, J., Rohman, M. M., Hasanuzzaman, M., Hossain, A., Islam, M. S., … &Sabagh, A. E. (2022). Saline Toxicity and Antioxidant Response in Oryza sativa: An Updated Review. Managing Plant Production Under Changing Environment, 79-102. https://doi.org/10.1007/978-981-16-5059-8_4
Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of botany, 99(6), 1161-1173. https://doi.org/10.1093/aob/mcm052
Mostofa, M. G., Seraj, Z. I., & Fujita, M. (2014). Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma, 251, 1373-1386.
Mostofa, M. G., Hossain, M. A., & Fujita, M. (2015). Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma, 252, 461-475. https://doi.org/10.1007/s00709-014-0691-3
Muthuramalingam, P., Jeyasri, R., Rakkammal, K., Satish, L., Shamili, S., Karthikeyan, A., … & Ramesh, M. (2022). Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review. Biology, 11(7), 1022. https://doi.org/10.3390/biology11071022
Nagarajan, S., Varatharajan, N., &Gandhimeyyan, R. V. (2022). Understanding the responses, mechanism and development of salinity stress tolerant cultivars in Rice. Integrative advances in rice research, 91. DOI: 10.5772/intechopen.99233
Nedjimi, B. (2017). Calcium application enhances plant salt tolerance: a review. Essential Plant Nutrients: Uptake, Use Efficiency, and Management, 367-377. https://doi.org/10.1007/978-3-319-58841-4_15
Noreen, S., Sultan, M., Akhter, M. S., Shah, K. H., Ummara, U., Manzoor, H., … & Ahmad, P. (2021). Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeumvulgare L.) grown under salt stress. Plant Physiology and Biochemistry, 158, 244-254. https://doi.org/10.1016/j.plaphy.2020.11.007
Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K. &Noitsakis, B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163(2), 361-367. https://doi.org/10.1016/S0168-9452(02)00140-1
Pharmawati, M. &Wijaya, I. M. A. S. (2019). Changes in growth, biochemical components and antioxidant genes expression in rice seedling (Oryza sativa L.) cultivar ‘IR64’under salt stress. Indian Journal of Agricultural Research, 53(4), 478-482. DOI: 10.18805/IJARe.A-399
Qin, H., Li, Y., & Huang, R. (2020). Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 21(21), 8385. https://doi.org/10.3390/ijms21218385
Rahman, A., Nahar, K., Hasanuzzaman, M. & Fujita, M. (2016). Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science, 7, 609. https://doi.org/10.3389/fpls.2016.00609
Raja, V., Wani, U. M., Wani, Z. A., Jan, N., Kottakota, C., Reddy, M. K., ... & John, R. (2022). Pyramiding ascorbate–glutathione pathway in Lycopersicumesculentum confers tolerance to drought and salinity stress. Plant Cell Reports, 41(3), 619-637. https://doi.org/10.1007/s00299-021-02764-8
Rajput, V. D., Harish, Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., ... & Mandzhieva, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4), 267. https://doi.org/10.3390/biology10040267
Rezvi, H. U. A., Tahjib‐Ul‐Arif, M., Azim, M. A., Tumpa, T. A., Tipu, M. M. H., Najnine, F., ... & Brestič, M. (2023). Rice and food security: Climate change implications and the future prospects for nutritional security. Food and Energy Security, 12(1), e430. https://doi.org/10.1002/fes3.430
Riyazuddin, R., Verma, R., Singh, K., Nisha, N., Keisham, M., Bhati, K. K., ... & Gupta, R. (2020). Ethylene: A master regulator of salinity stress tolerance in plants. Biomolecules, 10(6), 959. https://doi.org/10.3390/biom10060959
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A. & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nat. Sci.,17(1), 34-40.
Sampangi-Ramaiah, M. H., Dey, P., Jambagi, S., VasanthaKumari, M. M., Oelmüller, R., Nataraja, K. N., ... & Uma Shaanker, R. (2020). An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Scientific Reports, 10(1), 1-14. https://doi.org/10.1038/s41598-020-59998-x
Shahid, S. A., Abdelfattah, M. A., Wilson, M. A., Kelley, J. A, & Chiaretti, J. V. (2014). United Arab Emirates keys to soil taxonomy (p. 108). New York, NY, USA: Springer.
Singha, S. & Choudhuri, M. A. (1990). Effect of salinity (NaCl) stress on H2O2 metabolism in Vigna and Oryza seedlings. Biochemie und Physiologie der Pflanzen, 186(1), 69-74. https://doi.org/10.1016/S0015-3796(11)8
0295-7
Muthayya, S., Sugimoto, J. D., Montgomery, S. & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the new york Academy of Sciences, 1324(1), 7-14.
Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, 32(5), 667.
Yang, H., Shukla, M. K. & Du, T. (2023). Assessment of plant mineral nutrition concentrations of tomato irrigated with brackish water and RO concentrate. Journal of Plant Nutrition, 1-18.
Yi, Y., Peng, Y., Song, T., Lu, S., Teng, Z., Zheng, Q., ... & Ye, N. (2022). NLP2-NR module associated NO is involved in regulating seed germination in rice under salt stress. Plants, 11(6), 795. https://doi.org/10.3390/plants11060795
Section
Research Articles

How to Cite

Salt stress and its impact on rice physiology with special reference to India- A review. (2023). Journal of Applied and Natural Science, 15(3), 1137-1146. https://doi.org/10.31018/jans.v15i3.4747