D. Sandhya Deepika M. Sridevi J. Lavanya


Farmers use excessive chemical fertilizers to boost crop productivity to meet growing agricultural demands. However, this practice is costly and environmentally hazardous. Sustainable increase in crop yield can be achieved through alternatives like microbial-based fertilizers. In the quest to identify plant growth-promoting endophytic bacteria, the present study was carried out and selected unexplored halophytic plant Heliotropium curassavicum L. Thirteen endophytic bacterial strains were isolated from both aerial and root portions of H.curassavicum. These isolates were tested for salt tolerance, enzyme production, and synthesis of growth-promoting secondary metabolites, like Indole-3-acetic acid (IAA) and phosphate solubilization . Most of the isolates belonged to the Bacillus family, exhibiting varying Gram staining and biochemical reactions. The majority are Gram-positive bacteria, non-motile, spore formers, and exist in two cells or chains. All isolates could tolerate up to 10% NaCl concentration and a temperature of 42°C. Based on phenotypic, bio-chemical characteristics, isolate HCR3 showed promising properties in synthesizing IAA and phosphate solubilization abilities. The isolate HCR3 grew well upto 10% NaCl concentration and also 42°C temperature. Based on molecular characterization by using 16S rRNA gene-based analysis HCR3 isolate was identified and belonged to the Genus Pseudomonas with the highest similarity index with Pseudomonas khazarica sp. HCR3 showed IAA production of 37µg ml-1, had a phosphate solubilization ability of 3.5 ppm, and recorded protease activity on gelatin medium. The findings highlight the potential of HCR3 and other strains from halophytic H. curassavicum L. to enhance plant growth through secondary bioactive metabolites, offering eco-friendly solutions for sustainable agriculture.




Endophytes, heliotrope, Indole 3-acetic acid, Plant growth promoting bacteria, Pseudomonas khazarica

Alishahi, F., Alikhani, H. A., Heidari, A. & Mohammadi, L. (2013). The study of inorganic insoluble phosphate solubilization and other plant growth promoting characteristics of indigenous Pseudomonas fluorescence bacteria of Kordan and Gonbad regions. Int J AgronAgr Res, 3, 53-60.
Alishahi, F., Alikhani, H. A., Khoshkholgh-Sima, N. A. & Etesami, H. (2020). Mining the roots of various species of the halophyte Suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth. International Microbiology, 23, 415-427.
ALKahtani, M. D., Fouda, A., Attia, K. A., Al-Otaibi, F., Eid, A. M., Ewais, E. E. D., ... & Abdelaal, K. A. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10(9), 1325.
Aneja, K. R. (2006). Experiments in Microbiology, Plant Pathology and Biotechnology. 4th Edition. New Delhi, pp. 245-275.
Batra, P., Barkodia, M., Ahlawat, U., Sansanwal, R., Sharma, T. & Wati, L. (2018). Endophytes: an environmental friendly Bacteria for plant growth promotion. Int. J. Curr. Microbiol. Appl. Sci, 7(2), 1899-1911.
Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
Gao, L., Ma, J., Liu, Y., Huang, Y., Mohamad, O. A. A., Jiang, H., ... & Li, L. (2021). Diversity and biocontrol potential of cultivable endophytic bacteria associated with halophytes from the West Aral Sea basin. Microorganisms, 9(7), 1448.
Gouda, S., Das, G., Sen, S. K., Shin, H.-S., and Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7:1538. doi:10.3389/fmicb.2016.01538.
Gyaneshwar, P., James, E. K., Mathan, N., Reddy, P. M., Reinhold-Hurek, B. & Ladha, J. K. (2001). Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of bacteriology, 183(8), 2634-2645.
Hassan, S. E. D. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of advanced research, 8(6), 687-695.
Hawksworth, D. L., & Pitt, J. I. (1983). A new taxonomy for Monascus species based on cultural and microscopical characters. Australian Journal of Botany, 31(1), 51-61.
Hucker, G. J., & Conn, H. J. (1923). Methods of Gram staining
Kumar S., Stecher G., Li M., Knyaz C., and Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549.
Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R., Taghavi, S., Mezgeay, M., & der Lelie, D. V. (2002). Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 21(6), 583-606.
Madhaiyan, M., Poonguzhali, S., Lee, J. S., Lee, K. C., Saravanan, V. S., & Santhanakrishnan, P. (2010). Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. International Journal of Systematic and Evolutionary Microbiology, 60(7), 1687-1692.
Maiyappan, S., Kumar, D., & Prasad, T. G. (2020). Multiple Roles of Endophytes in Modern Agriculture. Int. J. Curr. Microbiol. App. Sci, 9(8), 2269-2278.
Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 2014.
Phurailatpam, L., Gupta, A., Sahu, P.K. et al. Insights into the functional potential of bacterial endophytes from the ethnomedicinal plant, Piper longum L.. Symbiosis 87, 165–174 (2022). https://doi.org/10.1007/s13199-022-00864-x.
Pothiraj, C., Balaji, P., Shanthi, R., Gobinath, M., Babu, R. S., Munirah, A. A. D., ... & Arumugam, R. (2021). Evaluating antimicrobial activities of Acanthus ilicifolius L. and Heliotropium curassavicum L against bacterial pathogens: an in-vitro study. Journal of Infection and Public Health, 14(12), 1927-1934.
Sanjay, A., Purvi, N. P. & Meghna, J. V. (2014). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. African Journal of Microbiology Research, 8(17), 1779-1788.
Seeley, H. W. and Vandemark, P.J., 1981, Microbes in action. A Laboratory Manual of Microbiology. Freeman and Company, San Francisco, USA., pp.388.
Tarhriz, V., Nouioui, I., Spröer, C., Verbarg, S., Ebrahimi, V., Cortés-Albayay, C., ... & Hejazi, M. S. (2020). Pseudomonas khazarica sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Khazar Sea sediments. Antonie van Leeuwenhoek, 113(4), 521-532.
Tian, X. Y. & Zhang, C. S. (2017). Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte Messerschmidia sibirica. Frontiers in Microbiology, 8, 2288.
Tropical Plants Database, Ken Fern. tropical.theferns.info. 2022-11-18.
Weyens, N., van der Lelie, D., Taghavi, S. &Vangronsveld, J. (2009). Phytoremediation: plant–endophyte partnerships take the challenge. Current Opinion in Biotechnology, 20(2), 248-254.doi: 10.1016/j.copbio.2009.02.012.
Yadav, A. N. (2018). Biodiversity and biotechnological applications of host specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci. Microbiol. 1:44.
Research Articles

How to Cite

Isolation, screening, and characterization of plant growth enhancing endophytic bacteria from halophytic Heliotropium curassavicum L. collected from salt stress areas of Srikakulam, Andhra Pradesh. (2023). Journal of Applied and Natural Science, 15(3), 1204-1211. https://doi.org/10.31018/jans.v15i3.4727