Foliar application of Ascophyllum nodosum on improvement of photosynthesis, fruit setting percentage, yield and quality of tomato (Solanum lycopersicum L.)
##plugins.themes.bootstrap3.article.main##
Abstract
In recent days, liquid formulations of brown seaweed extract, Ascophyllum nodosum used as a biostimulant in agriculture. Various studies suggest that A. nodosum enhanced the growth and yield of agriculturally important crops, but still, there is a lack of information about the biostimulation effects on photosynthesis, flowering and fruit setting of tomato. Hence, the present study aimed to know the effect of foliar application of A. nodosum on photosynthesis, flowering, fruit setting, yield and quality of tomato. A biostimulant product, MC Set with A. nodosum extract applied to tomato as a foliar spray at rates of three different concentrations such as 1.0 L ha−1 (MS 1), 2.0 L ha−1 (MS 2), 3.0 L ha−1 (MS 3) for six times during flowering of 2nd (30 Days after transplanting – DAT), 3rd (40 DAT) and 4th (50 DAT) cluster and fruit setting of 2nd (60 DAT), 3rd (70 DAT) and 4th (80 DAT) cluster respectively. The MC Set treatments enhanced the plant photosynthesis, flower number and fruit number per cluster, yield and quality traits of tomato. However, the middle concentration MS 2 showed highest photosynthetic rate, stomatal conductance, SPAD value, flower and fruit in 2nd, 3rd and 4th cluster. It also had better average fruit weight and yield per plant and hectare and enhanced the quality parameters such as total soluble solids, ascorbic acid content, lycopene and total sugars compared to control and other two concentrations of MS Set. Hence, using A. nodosum extract on tomato growth could be a better sustainable crop production method.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Ascophyllum nodosum, Flowering, Fruit setting, MC set, Photosynthesis, Quality, Yield
Ahmed, M., Ullah, H., Piromsri, K., Tisarum, R., Cha-um, S. & Datta, A. (2022). Effects of an Ascophyllum nodosum seaweed extract application dose and method on growth, fruit yield, quality, and water productivity of tomato under water-deficit stress. South African Journal of Botany, 151, 95-107. https://doi.org/10.1016/j.sajb.2022.09.045.
Ahmed, S. & Fahmy, A. (2019). Applications of natural polysaccharide polymers to overcome water scarcity on the yield and quality of tomato fruits. Journal of Soil Sciences and Agricultural Engineering, 10(4), 199-208. https://doi.org/10.21608/jssae.2019.36727.
Ali, J., Jan, I., Ullah, H., Ahmed, N., Alam, M., Ullah, R. ... & Nawaz, T. (2022). Influence of Ascophyllum nodosum Extract Foliar Spray on the Physiological and Biochemical Attributes of Okra under Drought Stress. Plants, 11(6), 790. https://doi.org/10.3390/plants11060790.
Ali, M. R., Mehraj, H. & Jamal Uddin, A. F. M. (2015). Effects of foliar application of zinc and boron on growth and yield of summer tomato. Journal of Bioscience and Agriculture Research, 6(1), 512-517. https://doi.org/10.188 01/jbar.060115.61.
Ali, N., Farrell, A., Ramsubhag, A. & Jayaraman, J. (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of Applied Phycology, 28, 1353-1362. https://doi.org/10.1007/s10811-015-0608-3.
Ali, N., Ramkissoon, A., Ramsubhag, A. & Jayaraj, J. (2016). Ascophyllum extract application causes reduction of disease levels in field tomatoes grown in a tropical environment. Crop Protection, 83, 67-75. https://doi.org/10.1016/j.cropro.2016.01.016.
Ali, O., Ramsubhag, A. & Jayaraman, J. (2019). Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One, 14(5), e0216710. https://doi.org/10.1371/journal.pone.0216710.
Ali, O., Ramsubhag, A. & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3), 531. https://doi.org/10.3390/plants10030531.
Ali, O., Ramsubhag, A., Daniram Benn Jr. Ramnarine, S. & Jayaraman, J. (2022). Transcriptomic changes induced by applications of a commercial extract of Ascophyllum nodosum on tomato plants. Scientific Reports, 12(1), 8042. https://doi.org/10.1038/s41598-022-11263-z.
Arioli, T., Villalta, O. N., Hepworth, G., Farnsworth, B. & Mattner, S. W. (2023). Effect of seaweed extract on avocado root growth, yield and post-harvest quality in far north Queensland, Australia. Journal of Applied Phycology, 1-11. https://doi.org/10.1007/s10811-023-02933-0.
Basavaraja, P. K., Yogendra, N. D., Zodape, S. T., Prakash, R. & Ghosh, A. (2018). Effect of seaweed sap as foliar spray on growth and yield of hybrid maize. Journal of Plant Nutrition, 41(14), 1851-1861. https://doi.org/10.1080/01904167.2018.1463381.
Battacharyya, D., Babgohari, M. Z., Rathor, P. & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. https://doi.org/10.1016/j.scienta.2015.09.012.
Calvo, P., Nelson, L. & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and soil, 383, 3-41. https://doi.org/10.1007/s11104-014-2131-8.
Campobenedetto, C., Agliassa, C., Mannino, G., Vigliante, I., Contartese, V., Secchi, F. & Bertea, C. M. (2021). A biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts mitigates water stress effects on tomato (Solanum lycopersicum L.). Agriculture, 11(6), 557. https://doi.org/10.3390/agricultur e11060557.
Castronuovo, D., Comegna, A., Belviso, C., Satriani, A. & Lovelli, S. (2023). Zeolite and Ascophyllum nodosum-Based Biostimulant Effects on Spinach Gas Exchange and Growth. Agriculture, 13(4), 754. https://doi.org/10.33 90/agriculture13040754.
Colla, G., Cardarelli, M., Bonini, P. & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52(9), 1214-1220. https://doi.org/10.21273/HORTSCI12200-17.
Damalas, C. A. & Koutroubas, S. D. (2016). Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics, 4(1), 1. https://doi.org/10.3390/toxics401 0001.
Lucia, D. M. C., Baghdadi, A., Mangione, F., Borella, M., Zegada-Lizarazu, W., Ravi, S. ... & Nardi, S. (2022). Transcriptional and physiological analyses to assess the effects of a novel biostimulant in tomato. Frontiers in Plant Science, 12, 781993. https://doi.org/10.3389/fpls.2021.781993.
Di Mola, I., Ottaiano, L., Cozzolino, E., Marra, R., Vitale, S., Pironti, A. ... & Mori, M. (2023). Yield and Quality of Processing Tomato as Improved by Biostimulants Based on Trichoderma sp. and Ascophyllum nodosum and Biodegradable Mulching Films. Agronomy, 13(3), 901. https://doi.org/10.3390/agronomy13030901.
Di Stasio, E., Cirillo, V., Raimondi, G., Giordano, M., Esposito, M. & Maggio, A. (2020). Osmo-priming with seaweed extracts enhances yield of salt-stressed tomato plants. Agronomy, 10(10), 1559. https://doi.org/10.3390/agronomy10101559.
Di Stasio, E., Van Oosten, M. J., Silletti, S., Raimondi, G., dell’Aversana, E., Carillo, P. & Maggio, A. (2018). Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. Journal of Applied Phycology, 30, 2675-2686. https://doi.org/10.1007/s10811-018-1439-9.
Dookie, M., Ali, O., Ramsubhag, A. & Jayaraman, J. (2021). Flowering gene regulation in tomato plants treated with brown seaweed extracts. Scientia Horticulturae, 276, 109715. https://doi.org/10.1016/j.scienta.2020.109715.
Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.201 5.09.021.
Farooq, S., A. Rather, S., Gull, A., Ahmad Ganai, S., Masoodi, F. A., Mohd Wani, S. & Ganaie, T. A. (2020). Physicochemical and nutraceutical properties of tomato powder as affected by pretreatments, drying methods, and storage period. International Journal of Food Properties, 23(1), 797-808. https://doi.org/10.1080/1094291 2.2020.1758716.
Francesca, S., Arena, C., Hay Mele, B., Schettini, C., Ambrosino, P., Barone, A. & Rigano, M. M. (2020). The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy, 10(3), 363. https://doi.org/10.3390/agronomy10030363.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F. ... & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383.
Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T. & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy, 130, 141-174. https://doi.org/10.1016/bs.agron.2014.10.001.
Hedge, J.; Hofreiter, B. Estimation of carbohydrate. In Methods in Carbohydrate Chemistry; Academic Press: New York, NY, USA, 1962; pp. 17–22.
Hussain, H. I., Kasinadhuni, N. & Arioli, T. (2021). The effect of seaweed extract on tomato plant growth, productivity and soil. Journal of Applied Phycology, 33(2), 1305-1314. https://doi.org/10.1007/s10811-021-02387-2.
Ikewuchi, C. J. & Ikewuchi, C. C. (2011). Iodometric determination of the ascorbic acid (vitamin C) content of some fruits consumed in a university community in Nigeria. Global Journal of Pure and Applied Sciences, 17(1), 47-49.
Ikuyinminu, E., Goni, O. & O’Connell, S. (2022). Enhancing irrigation salinity stress tolerance and increasing yield in tomato using a precision engineered protein hydrolysate and Ascophyllum nodosum-derived biostimulant. Agronomy, 12(4), 809. https://doi.org/10.3390/agronomy1 2040809.
Kaluzewicz, A., Krzesinski, W., Spizewski, T. & Zaworska, A. (2017). Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 197-202. https://doi.org/10.15835/nbha45110529.
Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M. ... & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x.
Koleska, I., Hasanagic, D., Todorovic, V., Murtic, S., Klokic, I., Parađikovic, N. & Kukavica, B. (2017). Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. Journal of Plant Interactions, 12(1), 209-218. https://doi.org/10.108 0/17429145.2017.1319503.
Langowski, L., Goni, O., Ikuyinminu, E., Feeney, E. & O'Connell, S. (2022). Investigation of the direct effect of a precision Ascophyllum nodosum biostimulant on nitrogen use efficiency in wheat seedlings. Plant Physiology and Biochemistry, 179, 44-57. https://doi.org/10.1016/j.plaphy.2022.03.006.
Mannino, G., Campobenedetto, C., Vigliante, I., Contartese, V., Gentile, C. & Bertea, C. M. (2020). The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules, 10(12), 1662. https://doi.org/10.3390/biom10121662.
Meng, W., Sun, H., Mu, T. & Garcia-Vaquero, M. (2023). Extraction, purification, chemical characterization and antioxidant properties in vitro of polyphenols from the brown macroalga Ascophyllum nodosum. Algal Research, 70, 102989. https://doi.org/10.1016/j.algal.2023.102989.
Murtic, S., Oljaca, R., Murtic, M. S., Vranac, A., Koleska, I. & Karic L. (2018). Effects of seaweed extract on the growth, yield and quality of cherry tomato under different growth conditions. Acta Agriculturae Slovenica, 111(2), 315-325. https://doi.org/10.14720/aas.2018.111.2.07.
Mzibra, A., Aasfar, A., Khouloud, M., Farrie, Y., Boulif, R., Kadmiri, I. M. ... & Douira, A. (2021). Improving Growth, Yield, and Quality of Tomato Plants (Solanum lycopersicum L) by the Application of Moroccan Seaweed-Based Biostimulants under Greenhouse Conditions. Agronomy, 11(7),1373. https://doi.org/10.3390/agronomy11071373.
Okolie, C. L., Mason, B. & Critchley, A. T. (2018). Seaweeds as a source of proteins for use in pharmaceuticals and high-value applications. Novel Proteins for Food, Pharmaceuticals, and Agriculture: Sources, Applications, and Advances, 217. https://doi.org/10.1002/978111 9385332.ch11.
Rahman, M. H., Quddus, M. A., Satter, M. A., Ali, R., Sarker, M. H. & Trina, T. N. (2020). Impact of foliar application of boron and zinc on growth, quality and seed yield of Okra. Journal of Energy and Natural Resources, 9(1), 1-9. https://doi.org/10.11648/j.jenr.20200901.11.
Ranganna, S. Handbook of analysis and quality control for fruit and vegetable products: Tata McGraw-Hill Education. J. Environ. Hortic. 1986, 514, 14–20.
Rashad, Y. M., El-Sharkawy, H. H. & Elazab, N. T. (2022). Ascophyllum nodosum extract and mycorrhizal colonization synergistically trigger immune responses in pea plants against Rhizoctonia root rot, and enhance plant growth and productivity. Journal of Fungi, 8(3), 268. https://doi.org/10.3390/jof8030268.
Renaut, S., Masse, J., Norrie, J. P., Blal, B. & Hijri, M. (2019). A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microbial Biotechnology, 12(6), 1346-1358. https://doi.org/10.1111/1751-7915.13473.
Repke, R. A., Silva, D. M. R., dos Santos, J. C. C. & De Almeida Silva, M. (2022). Increased soybean tolerance to high-temperature through biostimulant based on Ascophyllum nodosum (L.) seaweed extract. Journal of Applied Phycology, 1-14. https://doi.org/10.1007/s10811-022-02821-z.
Rodriguez, A. & Sanders, I. R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME journal, 9(5), 1053-1061. https://doi.org/10.1038/ismej.2014.207.
Rouphael, Y. & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655.
Rouphael, Y., Corrado, G., Colla, G., De Pascale, S., Dell’Aversana, E., D’Amelia, L. I. ... & Carillo, P. (2021). Biostimulation as a means for optimizing fruit phytochemical content and functional quality of tomato landraces of the San Marzano area. Foods, 10(5), 926. https://doi.org/10.3390/foods10050926.
Ruchal, O. K., Pandey, S. R., Regmi, R., Regmi, R. & Magrati, B. B. (2020). Effect of foliar application of micronutrient (Zinc and Boron) in flowering and fruit setting of mandarin (Citrus reticulata Blanco) In Dailekh, Nepal. Malaysian Journal of Sustainable Agriculture, 4(2), 94-98. 10.26480/mjsa.02.2020.94.98
Sani, M. N. H., Islam, M. N., Uddain, J., Chowdhury, M. S. N. & Subramaniam, S. (2020). Synergistic effect of microbial and nonmicrobial biostimulants on growth, yield, and nutritional quality of organic tomato. Crop Science, 60(4), 2102-2114. https://doi.org/10.1002/csc2.20176.
Santaniello, A., Scartazza, A., Gresta, F., Loreti, E., Biasone, A., Di Tommaso, D. ... & Perata, P. (2017). Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Frontiers in Plant Science, 8, 1362. https://doi.org/10.3389/fpls.2017.01362.
Shukla, P. S. & Prithiviraj, B. (2021). Ascophyllum nodosum biostimulant improves the growth of Zea mays grown under phosphorus impoverished conditions. Frontiers in Plant Science, 11, 601843. https://doi.org/10.3389/fpls.2020.601843.
Shukla, P. S., Mantin, E. G., Adil, M., Bajpai, S., Critchley, A. T. & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 655. https://doi.org/10.3389/fpls.2019.00655.
Subramaniyan, L., Veerasamy, R., Prabhakaran, J., Selvaraj, A., Algarswamy, S., Karuppasami, K. M. ... & Nalliappan, S. (2023). Biostimulation Effects of Seaweed Extract (Ascophyllum nodosum) on Phytomorpho-Physiological, Yield, and Quality Traits of Tomato (Solanum lycopersicum L.). Horticulturae, 9(3), 348. https://doi.org/10.3390/horticulturae9030348.
Tigist, M., Workneh, T. S. & Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. Journal of Food Science and Technology, 50, 477-486. https://doi.org/10.1007/s13197-011-0378-0.
Ullah, R., Ayub, G., Ilyas, M., Ahmad, M., Umar, M., Mukhtar, S. & Farooq, S. (2015). Growth and yield of tomato (Lycopersicon esculentum L.) as influenced by different levels of zinc and boron as foliar application. American-Eurasian Journal of Agricultural & Environmental Sciences, 15(12), 2495-2498. 10.5829/idosi.aejaes.20 15.15.12.12820
Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behaviour, 12(8), e1356534. https://doi.org/10.1080/15592324.2017.1356534.
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S. & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 1-12. https://doi.org/10.1186/s40538-017-0089-5.
Voss‐Fels, K. & Snowdon, R. J. (2016). Understanding and utilizing crop genome diversity via high‐resolution genotyping. Plant Biotechnology Journal, 14(4), 1086-1094. https://doi.org/10.1111/pbi.12456.
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A. & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)