##plugins.themes.bootstrap3.article.main##

Sally Abdul Aziz Karim Luma Abdulhady Zwain Estabraq A. Mahmoud

Abstract

Pseudomonas aeruginosa  gram-negative, bacilli and facultative aerobic, P. aeruginosa cause cystic fibrosis patients, wounds, burns, and immunodeficienct patients,  that have many virulence factors such as pyocyanin , cytotoxic ,biofilm formation  and motility, Eighty-eight isolates belonging to P. aeruginosa were collected including the 66 clinical isolates obtained from different hospitals in Baghdad and were from different sources and 22 environmental isolates from previous studies of soil near oil fields. Microscopical and cultural characteristics were studied and diagnosed using biochemical tests, VITEC device, their ability to adhere to non-living (Polystyrene), living cell line (A549) and cytotoxicity of bacterial filtrate by MTT method. The results displayed that all isolates belonged to P. aeruginosa. The pigment-forming (pe26 – pc36) isolates and (PE33 – PC31) non-pigment-forming isolates were selected. That all selected bacteria were able to adhere to the Polystyrene  and an epithelial carcinoma of lung (A549) was of more than 300 colony formation units in dilution (1:10) ,(1:1000), and   (1:10000). The toxicity of the P. aeruginosa filtrate (pc36) isolated from clinical sources and producing pigments was 15.7, 34.5, 44 % at a concentration of 40, 60, 80 % respectively, while the isolate (pc31) that was isolated from clinical sources and non-producing pigment was 28.1, 75.2, 80.9 % at the same concentrations. As for the isolate (pe26),isolated from environmental sources and forming the pigment, the inhibition rate was 38.5, 83.1, 48.8 % at concentrations of 40, 60, 80) % respectively, and the isolate (PE33) that was isolated from environmental sources was 42, 73.4, 74.1 % at concentrations of  40, 60, 80 % respectively. The study will be helpful in evaluating the effect of pigment formation in P. aeruginosa on adhesion.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

A549 cell line, Adhesion, Cytotoxicity, Pigments, Pseudomonas aeruginosa

References
Abdali, R. H. & Al-Attar, N. S. (2020). Molecular and Phenotypic Study of Silver Nanoparticle Effect on Pyocyanin Produced From Pseudomonas Aeruginosa. Plant Archives, 20 (1), 1869-1875.
Abdelaziz, A. A., Kamer, A. M. A., Al-Monofy, K. B. & Al-Madboly, L. A. (2022). A purified and lyophilized Pseudomonas aeruginosa derived pyocyanin induces promising apoptotic and necrotic activities against MCF-7 human breast adenocarcinoma. Microbial Cell Factories, 21(1), 262. https://doi.org/10.1186/s12934-022-01988-x
Ahmed, G. F., Elkhatib, W. F. & Noreddin, A. M. (2014). Inhibition of Pseudomonas aeruginosa PAO1 adhesion to and invasion of A549 lung epithelial cells by natural extracts. Journal of infection and public health, 7(5), 436-444. https://doi.org/10.1016/j.jiph.2014.01.009
Al-Araji, M. K. & Ali, S. (2012). 2-Aminoacetophenone as a virulent factor for Pseudomonas aeruginosa causing sever burn and wound infections in Iraq. Ibn Al-Haitham Journal for Pure and Applied Science, 25, 88-97.
AL-Fridawy, R. A. K., Al-Daraghi, W. A. H. & Alkhafaji, M. H. (2020). Isolation and Identification of Multidrug Resistance Among Clinical and Environmental Pseudomonas aeruginosa Isolates. Iraqi journal of biotechnology, 19(2).
Almashgab, A. M., Yahya, E. B. & Banu, A. (2020). The Cytotoxicity Effects of Outer Membrane Vesicles Isolated from Hospital and Laboratory Strains of Pseudomonas Aeruginosa on Human Keratinocyte Cell Line. Malaysian Journal of Science, 45-53. https://doi.org/10.22452/mjs.vol39no3.3
AL-Mayyahi, A. W., AL-Hashimy, A. B. & AL-Awady, K. R. (2018). Molecular detection of exoU and exoS among Pseudomonas aeruginosa isolates from Baghdad and Wasit, Iraq. Iraqi journal of biotechnology, 17(1).
Al-Shammari, A. M., Al-Juboory, A., Asmaa, A., Ali, A. M., Al-Hili, Z. A. & Yaseen, N. Y. (2014). Establishment and characterization of a chemoresistant glioblastoma cell line from an Iraqi patient. In Abstract presented at the 105th Annual Meeting of the American Association for Cancer Research.
Al-Shwaikh, R. M. A. & Alornaaouti, A. F. (2018). Detection of tox A gene in Pseudomonas aeruginosa that isolates from different clinical cases by using PCR. Ibn AL-Haitham Journal For Pure and Applied Science, 26-30. https://doi.org/10.30526/2017.IHSCICONF.1767
Azghani, A. O., Idell, S., Bains, M. & Hancock, R. E. (2002). Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microbial pathogenesis, 33(3), 109-114. https://doi.org/10.1006/mpat.2002.0514
Badaoui, M., Sobolewski, C., Luscher, A., Bacchetta, M., Köhler, T., van Delden, C., ... & Chanson, M. (2023). Targeting HuR-Vav3 mRNA interaction prevents Pseudomonas aeruginosa adhesion to the cystic fibrosis airway epithelium. JCI insight. https://doi.org/10.1172/jci.insight.161961.
Beaussart, A., Baker, A. E., Kuchma, S. L., El-Kirat-Chatel, S., O’Toole, G. A., & Dufrêne, Y. F. (2014). Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pili. ACS nano, 8(10), 10723-10733. https://doi.org/10.1021/nn5044383
Bernardes, N., Ribeiro, A. S., Abreu, S., Vieira, A. F., Carreto, L., Santos, M., ... & Fialho, A. M. (2014). High-throughput molecular profiling of a P-cadherin overexpressing breast cancer model reveals new targets for the anti-cancer bacterial protein azurin. The International Journal of Biochemistry & Cell Biology, 50, 1-9. https://doi.org/10.1016/j.biocel.2014.01.023
Buré, C., Le Sénéchal, C., Macias, L., Tokarski, C., Vilain, S. & Brodbelt, J. S. (2021). Characterization of isomers of lipid A from Pseudomonas aeruginosa PAO1 by liquid chromatography with tandem mass spectrometry with higher-energy collisional dissociation and ultraviolet photodissociation. Analytical chemistry, 93(9), 4255-4262. https://doi.org/10.1021/acs.analchem.0c05069
Chemani, C., Imberty, A., de Bentzmann, S., Pierre, M., Wimmerová, M., Guery, B. P. & Faure, K. (2009). Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infection and immunity, 77(5), 2065-2075. https://doi.org/10.1128/iai.01204-08
Day, C. J., Hartley-Tassell, L. E., Seib, K. L., Tiralongo, J., Bovin, N., Savino, S., ... & Jennings, M. P. (2019). Lectin activity of Pseudomonas aeruginosa vaccine candidates PSE17-1, PSE41-5 and PSE54. Biochemical and biophysical research communications, 513(1), 287-290. https://doi.org/10.1016/j.bbrc.2019.03.092
Diggle, S. P. & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166(1), 30. https://doi.org/10.1099/mic.0.000860
Du, X., Youle, R. J., FitzGerald, D. J. & Pastan, I. (2010). Pseudomonas exotoxin A-mediated apoptosis is Bak dependent and preceded by the degradation of Mcl-1. Molecular and cellular biology, 30(14), 3444-3452. https://doi.org/10.1128/MCB.00813-09
El-Housseiny, G. S., ABOULWAFA, M. & Hassouna, N. A. (2013). Cytotoxic activities of some Pseudomonas aeruginosa isolates: possible mechanisms and approaches for inhibition. Turkish Journal of Biology, 37(1), 69-80. https://doi.org/ 10.3906/biy-1203-52
Ezeador, C. O., Ejikeugwu, P. C., Ushie, S. N. & Agbakoba, N. R. (2020). Isolation, identification and prevalence of Pseudomonas aeruginosa isolates from clinical and environmental sources in Onitsha Metropolis, Anambra State. European Journal of Medical and Health Sciences, 2(2), 1-5. https://doi.org/10.24018/ejmed.2020.2.2.188
Fonseca, A. P., Extremina, C., Fonseca, A. F. & Sousa, J. C. (2004). Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. Journal of medical microbiology, 53(9), 903-910. https://doi.org/10.1099/jmm.0.45637-0
Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., Davey, A. K., Chess-Williams, R., Kiefel, M. J., Arora, D. & Grant, G. D. (2016). Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins, 8(8), 236. https://doi.org/10.3390/toxins8080236
Hawdon, N. A., Aval, P. S., Barnes, R. J., Gravelle, S. K., Rosengren, J., Khan, S., Ciofu, O., Johansen, H. K., Høiby, N. & Ulanova, M. (2010). Cellular responses of A549 alveolar epithelial cells to serially collected Pseudomonas aeruginosa from cystic fibrosis patients at different stages of pulmonary infection. FEMS Immunology & Medical Microbiology, 59(2), 207-220. https://doi.org/10.1111/j.1574-695X.2010.00693.x
Hernandez-Montelongo, J., Nicastro, G. G., Pereira, T. D. O., Zavarize, M., Beppu, M. M., Macedo, W. A., Baldini, R. L. & Cotta, M. A. (2021). Antibacterial effect of hyaluronan/chitosan nanofilm in the initial adhesion of Pseudomonas aeruginosa wild type, and IV pili and LPS mutant strains. Surfaces and Interfaces, 26, 101415. https://doi.org/10.1016/j.surfin.2021.101415
Hirakawa, H., Takita, A., Uchida, M., Kaneko, Y., Kakishima, Y., Tanimoto, K., Kamitani, W. & Tomita, H. (2021). Adsorption of phenazines produced by pseudomonas aeruginosa using AST-120 decreases pyocyanin-associated cytotoxicity. Antibiotics, 10(4), 434. https://doi.org/10.3390/antibiotics10040434
Hoffman, C. L., Lalsiamthara, J. & Aballay, A. (2020). Host mucin is exploited by Pseudomonas aeruginosa to provide monosaccharides required for a successful infection. MBio, 11(2), e00060-20. https://doi.org/10.1128/mbio.00060-20
Jawad, L. Q. & Rasheed, H. A. R. R. (2022). Isolation and Purification of Anticancer Protein Exotxin A From Pseudomonas Aeruginosa. Iraqi Journal of Agricultural Sciences, 53(1), 48-56. https://doi.org/10.36103/ijas.v53i1.1507
Khan, F., Pham, D. T. N., Oloketuyi, S. F. & Kim, Y. M. (2020). Regulation and controlling the motility properties of Pseudomonas aeruginosa. Applied microbiology and biotechnology, 104, 33-49. https://doi.org/10.1007/s00253-019-10201-w
Laventie, B. J., Sangermani, M., Estermann, F., Manfredi, P., Planes, R., Hug, I., Jaeger, T., Meunier, E., Broz, P. & Jenal, U. (2019). A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell host & microbe, 25(1), 140-152. https://doi.org/10.1016/j.chom.2018.11.008
Lillehoj, E. P., Kim, B. T., & Kim, K. C. (2002). Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. American Journal of Physiology-Lung Cellular and Molecular Physiology, 282(4), L751-L756. https://doi.org/10.1152/ajplung.00383.2001
Lindhout, T., Lau, P. C., Brewer, D. & Lam, J. S. (2009). Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology, 155(10), 3449-3460. https://doi.org/10.1099/mic.0.030510-0
Malinovská, L., Le, S. T., Herczeg, M., Vašková, M., Houser, J., Fujdiarová, E., Komárek, J., Hodek, P., Borbás, A., Wimmerová, M. & Csávás, M. (2019). Synthesis of β-D-galactopyranoside-presenting glycoclusters, investigation of their interactions with Pseudomonas aeruginosa lectin A (PA-IL) and evaluation of their anti-adhesion potential. Biomolecules, 9(11), 686. https://doi.org/10.3390/biom9110686
Moehario, L. H., Tjoa, E., Putranata, H., Joon, S., Edbert, D. & Robertus, T. (2021). Performance of TDR-300B and VITEK® 2 for the identification of Pseudomonas aeruginosa in comparison with VITEK®-MS. Journal of International Medical Research, 49(2), 0300060521989893. https://doi.org/10.1177/0300060521989893
Mohammed, H. A. & Zgair, A. K. (2022). Detection of Quorum Sensing Genes of Pseudomonas aeruginosa Isolated from Different Areas in Iraq. Iraqi Journal of Science, 4665-4673. https://doi.org/10.24996/ijs.2022.63.11.5
Mohammed, H. A., Yossef, H. S. & Mohammad, F. I. (2014). The cytotoxicity effect of pyocyanin on human hepatocellular carcinoma cell line (HepG2). Iraqi Journal of Science, 55(2B), 668-674.
Moissenet, D., & Khedher, M. (2011, July). Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation. Annales de biologie Clinique, 69(4), 393-403. https://doi.org/ 10.1684/abc.2011.0589
Morin, C. D., Déziel, E., Gauthier, J., Levesque, R. C., & Lau, G. W. (2021). An organ system-based synopsis of Pseudomonas aeruginosa virulence. Virulence, 12(1), 1469-1507. https://doi.org/10.1080/21505594.2021.1926408
O'Malley, Y. Q., Reszka, K. J., & Britigan, B. E. (2004). Direct oxidation of 2′, 7′-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radical Biology and Medicine, 36(1), 90-100. https://doi.org/10.1016/j.freeradbiomed.2003.09.021
Pang, Z., Gu, M. D. & Tang, T. (2022). Pseudomonas aeruginosa in cancer therapy: current knowledge, challenges and future perspectives. Frontiers in Oncology, 1819. https://doi.org/ 10.3389/fonc.2022.891187
Patil, P. D., Jin, Y. & Luk, Y. Y. (2022). Chemical control over Asialo-GM1: A dual ligand for pili and Lectin A that activates swarming motility and facilitates adherence of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 215, 112478. https://doi.org/10.1016/j.colsurfb.2022.112478
Paulsson, Magnus, Yu-Ching Su, Tamara Ringwood, Fabian Uddén, and Kristian Riesbeck (2019). Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds. Scientific reports 9(1), 1-10. https://doi.org/10.1038/s41598-019-54622-z
Pier, G. B., & Ramphal, R. (2010). Pseudomonas aeruginosa, p 2835–2860. Mandell, Douglas, and Bennett's principles and practice of infectious diseases, 7th ed. Philadelphia, PA 19103: Churchill Livinstone Elsevier; 2010.
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X. & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1), 199. https://doi.org/10.1038/s41392-022-01056-1
Riedel, S., Morse, S. A., Mietzner, T. A. & Miller, S. (2019). Jawetz Melnick & Adelbergs Medical Microbiology 28 E. McGraw Hill Professional.‏
Sawada, H., Fujikawa, T., Osada, S. & Satou, M. (2022). Pseudomonas petroselini sp. nov., a pathogen causing bacterial rot of parsley in Japan. International Journal of Systematic and Evolutionary Microbiology, 72(6), 005424. https://doi.org/10.1099/ijsem.0.005424
Seiffein, N. L. & Ali, G. H. (2021). Effect of subinhibitory concentrations of selected antibiotics and propolis on pyocyanin and biofilm production among Pseudomonas aeruginosa isolates in Alexandria, Egypt. Egyptian Journal of Medical Microbiology, 30(4), 129-137. https://doi.org/10.21608/ejmm.2021.198932
Shamkhi, G. K. & Khudaier, B. Y. (2020). Isolation and molecular identification of MDR Pseudomonas aeruginosa from animals and patients in Basrah province. Basrah Journal of Veterinary Research, 19(2).
Urgancı, N. N., Yılmaz, N., Alaşalvar, G. K. & Yıldırım, Z. (2022). Pseudomonas aeruginosa and Its Pathogenicity. Turkish Journal of Agriculture-Food Science and Technology, 10(4), 726-738. https://doi.org/10.24925/turjaf.v10i4.726-738.4986
Vetrivel, A., Ramasamy, M., Vetrivel, P., Natchimuthu, S., Arunachalam, S., Kim, G. S. & Murugesan, R. (2021). Pseudomonas aeruginosa biofilm formation and its control. Biologics, 1(3), 312-336. https://doi.org/10.3390/biologics1030019
Weldon, J. E. & Pastan, I. (2011). A guide to taming a toxin–recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. The FEBS journal, 278(23), 4683-4700. https://doi.org/10.1111/j.1742-4658.2011.08182.x
Wood, S. J., Goldufsky, J. W., Seu, M. Y., Dorafshar, A. H. & Shafikhani, S. H. (2023). Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells, 12(1), 195. https://doi.org/10.3390/cells12010195
Section
Research Articles

How to Cite

Effect of pigments of Pseudomonas aeruginosa on adhering and cytotoxicity of A549 cell line. (2023). Journal of Applied and Natural Science, 15(3), 954-960. https://doi.org/10.31018/jans.v15i3.4675