Optimising reaction variables for the preparation of superabsorbent iron fertiliser hydrogel using sugarcane bagasse: A sustainable approach to improve crop nutrient release
Article Main
Abstract
Iron (Fe) is a vital micronutrient essential for crop growth and development. Utilisation of bio-based, environmentally friendly functional polymers is inevitable for society. As an alternative to the conventional Fe fertiliser, the present study aimed to synthesise a higher Fe percentage containing hydrogel with organic substances that can facilitate the slow release of nutrients, reduce fertiliser nutrient fixation, and minimise environmental pollution. The reaction variables were optimised for the preparation of superabsorbent using sugarcane bagasse and nano-zeolite-based slow-release Fe fertiliser (SR Fe) hydrogel. This was formulated by graft, co-polymerising acrylic acid, acrylamide, sugarcane bagasse, and nano-zeolite with N,N'-methylene bis-acrylamide as a crosslinker and ammonium persulfate as an initiator. Based on the swelling percentage, the reaction variables of the SR Fe fertiliser were standardised. The crosslinker (MBA - 10 wt%), the initiator (APS - 10 wt%), the filler (Nano-zeolite - 10 wt%), the monomer acrylamide composition (AAm - 2g), the acrylic acid content (AA - 7 ml), the reaction temperature (60oC), and the drying temperature (40oC) were chosen based on desirable swelling percentage and loaded with Fe fertiliser. The Fe fertiliser was loaded to sugarcane bagasse in different ratios (1:0.5, 1:1, 1:1.5, 1:2). The present study showed that the SR Fe fertiliser with the highest percentage of Fe (6.4%) in the ratio of sugarcane bagasse to Fe fertiliser of 1:2 could be used as an effective SR Fe fertiliser to supply nutrients slowly to crops to meet their nutrient needs and improve nutrient use efficiency.
Article Details
Article Details
Iron, Sugarcane Bagasse, Superabsorbent hydrogel, Swelling percentage
Arif, Y., Singh, P., Siddiqui, H., Naaz, R. & Hayat, S. (2022). Transition metal homeostasis and its role in plant growth and development. Microbial Biofertilizers Micronutrient Availability: The Role of Zinc in Agriculture Human Health, 159-178. doi: https://doi.org/10.1007/978-3-030-76609-2_8
Azeem, M. K., Islam, A., Rizwan, M., Rasool, A., Gul, N., Khan, R. U., Khan, S. M. & Rasheed, T. (2023). Sustainable and environment Friendlier carrageenan-based pH-responsive hydrogels: swelling behavior and controlled release of fertilisers. Colloid Polymer Science, 1-11. doi: https://doi.org/10.1016/j.ijbiomac.2019.11.091
Betriani, R., Sutarno, S., Kartini, I. & Budiarta, J. (2023). Synthesis of Zeolite/NPK Coated with Cu-Alginate-PVA-Glutaraldehyde as a Slow-Release Fertilizer. Indonesian Journal of Chemistry, 23(1), 184-199. doi: https://doi.org/10.22146/ijc.76205
Chaisena, A., Narakaew, S. & Promanan, T. (2020). Rice straw-g-poly (acrylic acid)/nano-zeolite NaX superabsorbent nanocomposites with controlled release of fertiliser nutrients.
Chen, Y. C. & Chen, Y. H. (2019). Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertiliser. Science of the Total Environment, 655(958-967. doi: https://doi.org/10.1016/j.scitotenv.2018.11.264
Daoud, L. & Bennour, S. (2021). Synthesis and Characterisation of Carboxymethyl Cellulose-Graft-Poly (Acrylamide-co-Crotonic Acid) Hydrogel: Matrix for Ammonium Nitrate Release, as Agrochemical. Russian Journal of Applied Chemistry, 94(11), 1499-1512. doi: https://doi.org/10.1134/S1070427221110057
El Idrissi, A., El Gharrak, A., Achagri, G., Essamlali, Y., Amadine, O., Akil, A., Sair, S. & Zahouily, M. (2022). Synthesis of urea-containing sodium alginate-g-poly (acrylic acid-co-acrylamide) superabsorbent-fertiliser hydrogel reinforced with carboxylated cellulose nanocrystals for efficient water and nitrogen utilisation. Journal of Environmental Chemical Engineering, 10(5), 108282. doi: https://doi.org/10.1016/j.jece.2022.108282
Firmanda, A., Fahma, F., Syamsu, K., Suryanegara, L. & Wood, K. (2022). Controlled/slow‐release fertiliser based on cellulose composite and its impact on sustainable agriculture. Biofuels, Bioproducts Biorefining, 16(6), 1909-1930. doi: https://doi.org/10.1002/bbb.2433
Gao, Y., Peng, K. & Mitragotri, S. (2021). Covalently Crosslinked hydrogels via step‐growth reactions: crosslinking chemistries, polymers, and clinical impact. Advanced Materials, 33(25), 2006362. doi: https://doi.org/10.1002/adma.202006362
Gharekhani, H., Olad, A. & Hosseinzadeh, F. (2018). Iron/NPK agrochemical formulation from superabsorbent nanocomposite based on maise bran and montmorillonite with functions of water uptake and slow-release fertiliser. New Journal of Chemistry, 42(16), 13899-13914. doi: https://doi.org/10.1039/C8NJ01947A
Ghobashy, M. M., Amin, M. A., Nady, N., Meganid, A. S., Alkhursani, S. A., Alshangiti, D. M., Madani, M., Al-Gahtany, S. A. & Zaher, A. A. (2022). Improving impact of poly (starch/acrylic acid) superabsorbent hydrogel on growth and biochemical traits of sunflower under drought stress. Journal of Polymers the Environment, 1-11. doi: https://doi.org/10.1007/s10924-021-02322-z
Kalyan, V. R. K., Meena, S., Jawahar, D. & Karthikeyan, S. (2021). In vitro Screening of Iron Efficient Groundnut Cultivars for Calcareous Soil. International Journal of Environment and Climate Change, 10(12), 137-148. doi: http://dx.doi.org/10.9734/ijecc/2020/v10i1230291
Kumar, H. (2022). A review on facile synthesis of nanoparticles made from biomass wastes. Nanotechnology for Environmental Engineering, 7(3), 783-796. doi: https://doi.org/10.1007/s41204-022-00259-9
Kumar, V., Mittal, H. & Alhassan, S. M. (2019). Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. International Journal of Biological Macromolecules, 132(1252-1261. doi: https://doi.org/10.1016/j.ijbiomac.2019.04.023
Lindsay, W. L. & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. doi: https://doi.org/10.2136/sssaj1978.0361599500420 0030009x
Olad, A., Doustdar, F. & Gharekhani, H. (2020). Fabrication and characterisation of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surfaces A: Physicochemical Engineering Aspects, 601(124962. doi: https://doi.org/10.1016/j.colsurfa.2020.124962
Olad, A., Gharekhani, H., Mirmohseni, A. & Bybordi, A. (2016). Study on the synergistic effect of clinoptilolite on the swelling kinetic and slow release behavior of maise bran-based superabsorbent nanocomposite. Journal of Polymer Research, 23(1-14. doi: https://doi.org/10.1007/s10965-016-1140-0
Pimsen, R., Porrawatkul, P., Nuengmatcha, P., Ramasoot, S. & Chanthai, S. (2021). Efficiency enhancement of slow release of fertiliser using nanozeolite–chitosan/sago starch-based biopolymer composite. Journal of Coatings Technology Research, 18(10-11), 1-12. doi: http://dx.doi.org/10.1007/s11998-021-00495-9
Qamruzzaman, M., Ahmed, F. & Mondal, M. I. H. (2022). An overview on starch-based sustainable hydrogels: Potential applications and aspects. Journal of Polymers the Environment, 30(1), 19-50. doi: https://doi.org/10.1007/s10924-021-02180-9
Rashidzadeh, A., Olad, A., Salari, D. & Reyhanitabar, A. (2014). On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertiliser. Journal of Polymer Research, 21(1-15. doi: https://doi.org/10.1007/s10965-013-0344-9
Rop, K., Mbui, D., Njomo, N., Karuku, G. N., Michira, I. & Ajayi, R. F. (2019). Biodegradable water hyacinth cellulose-graft-poly (ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon, 5(3), e01416. doi: https://doi.org/10.1016/j.heliyon.20 19.e01416
Sarmah, D. & Karak, N. (2020). Biodegradable superabsorbent hydrogel for water holding in soil and controlled‐release fertiliser. Journal of Applied Polymer Science, 137(13), 48-65. doi: https://doi.org/10.1002/app.48495
Shariatinia, Z. (2020). Biopolymeric nanocomposites in drug delivery. Advanced Biopolymeric Systems for Drug Delivery, 233-290. doi: https://doi.org/10.1007/978-3-030-46923-8_10
Sharma, H., Yadav, A., Rajendran, N., Abinandan, S., Baskar, G. & Krishnamurthi, T. (2023). Techno-economic process parameter studies for hydrogel composite production from corncob biomass and its application as fertiliser releasing agent. Chemical Papers, 1-11. doi: https://doi.org/10.1007/s12010-009-8560-9
Sharma, N., Singh, A. & Dutta, R. K. (2021). Biodegradable fertiliser nanocomposite hydrogel based on poly (vinyl alcohol)/kaolin/diammonium hydrogen phosphate (DAhP) for controlled release of phosphate. Polymer Bulletin, 78(2933-2950. doi: https://doi.org/10.1007/s00289-020-03252-x
Tanan, W., Panichpakdee, J. & Saengsuwan, S. (2019). Novel biodegradable hydrogel based on natural polymers: Synthesis, characterisation, swelling/reswelling and biodegradability. European Polymer Journal, 112(678-687. doi: https://doi.org/10.1016/J.EURPOLYMJ.2018.10.033
Tanan, W., Panichpakdee, J., Suwanakood, P. & Saengsuwan, S. (2021). Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilisers. Journal of Industrial Engineering Chemistry, 101(237-252. doi: https://doi.org/10.1016/j.jiec.2021.06.008
Thivya, P., Akalya, S. & Sinija, V. (2022). A comprehensive review on cellulose-based hydrogel and its potential application in the food industry. Applied Food Research, 100161. doi: https://doi.org/10.1016/j.afres.2022.100161
Zhang, H., Shi, L. W. E. & Zhou, J. (2023). Recent developments of polysaccharide‐based double‐network hydrogels. Journal of Polymer Science, 61(1), 7-43. doi: https://doi.org/10.1002/pol.20220510
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)