Article Main

Ranjan Kumar Jena I Yesu Raja V Ramamoorthy S Lakshmi Narayanan R Renuka Eraivan Arutkani Aiyanathan K A Subbiah V Karthik Pandi

Abstract

Grapevine powdery mildew is the world's most important plant disease, and Ampelomyces frequently fight them. While it does not usually cause plant death, its major infections can result in significant production losses and severely impact wine quality. Fungicides are frequently used to control the disease, which can have long-term adverse effects on the ecosystem. As a result, alternative and environmentally friendly disease management approaches must be developed. The study aimed to reduce costly and toxic fungicide use by using Ampelomyces, a natural biofungicide, against various powdery mildew fungi. GC-MS analysis was also used to determine the antagonistic potential and efficacy of volatile organic chemicals produced by several Ampelomyces spp. against Erysiphe necator, which causes powdery mildew of grapes. The molecular characterization of A. quisqualis isolates based on using rDNA ITS region was also carried out and sequenced. GC-MS analysis identified various antimicrobial compounds, such as squalene (4.643%), octadecanoic acid (3.862%), tetradecanoic acid (3.600%), and 9,12-octadecadienoic acid (Z,Z) (1.451%). The least abundant compounds were 2-Hexadecanol, 1-Tricosanol, and 2-propenyl ester, with percentages of 0.485, 0.519, and 0.560, respectively. These bioactive compounds revealed by GC-MS analysis in crude extracts of A. quisqualis had a stronger antifungal and antibacterial activity against E. necator. As a result, using A. quisqualis to control the powdery mildew of grapes significantly reduced pathogen growth and disease incidence.

Article Details

Article Details

Keywords

Ampelomyces Quisqualis, Biocontrol, GC-MS, Powdery mildew, Volatile organic compounds

References
Angeli, D., Pellegrini, E. & Pertot, I. (2009). Occurrence of Erysiphe necator chasmothecia and their natural parasitism by Ampelomyces quisqualis. Phytopathology.99(6), 704-10. https://doi: 10.1094/PHYTO-99-6-0704
Angeli, D., Pellegrini, E., Micheli, S., Ress, D., Maurhofer, M. & Pertot, I. (2009a). Molecular characterization of Ampelomyces spp. strains from different hosts and geographic origins and evaluation of their potential to control powdery mildew of cucumber. IOBC/WPRS Bulletin, 43, 40–44. http://www.iobc-wprs.org/pub/bulletin...
Angeli, D., Puopolo, G., Maurhofer, M., Gessler, C. & Pertot, I. (2012). Is themycoparasitic activity of Ampelomyces quisqualis biocontrol strains related to phylogeny and hydrolytic enzyme production. Biol. Control., 63: 348-358.
Angeli, D., Saharan, K., Segarra, G., Sicher, C., & Pertot, I. (2017). Production of Ampelomyces quisqualis conidia in submerged fermentation and improvements in the formulation for increased shelf-life. Crop Protection, 97, 135-144. doi.org/10.1016/j.cropro.2016.11.012
Awa, E. P., Ibrahim, S., & Ameh, D. A. (2012). GC/MS analysis and antimicrobial activity of diethyl ether fraction of methanolic extract from the stem bark of Annona senegalensis Pers. International Journal of Pharmaceutical Sciences and Research, 3(11), 4213.
Braun U. (1987). A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia. (89).
Cadle-Davidson., Jason, L., Dani, M., Surya, S. (2019). Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology, 4(20), 421-438.
Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D., Darriet, P. (2004). Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathol, 53, 434–445.  doi.org/10.1111/j.0032-0862.2004.01016.x
Chatterjee, S., Karmakar, A., Azmi, S. A., & Barik, A. (2018). Antibacterial activity of long-chain primary alcohols from Solena amplexicaulis leaves. In Proceedings of the Zoological Society, Vol. 71, 313-319. Springer India.
Cheng, X., Xue, X., Ma, S., Sun, J., Zhang, G., & Li, Y. (2019). Genetic diversity and population structure of Ampelomyces quisqualis isolated from different host plants and geographical locations in China. European Journal of Plant Pathology, 153(4), 1163-1173.
Czubacka, E., Czerczak, S., & Kupczewska-Dobecka, M. (2021). The overview of current evidence on the reproductive toxicity of dibutyl phthalate. International Journal of Occupational Medicine and Environmental Health, 34(1).
Dai, X., Zhang, X., Chen, W., Chen, Y., Zhang, Q., Mo, S., & Lu, J. (2021). Dihydroartemisinin: a potential natural anticancer drug. International Journal of Biological Sciences, 17(2), 603.
Damm, U., Cannon, P. F., Woudenberg, J. H., Johnston, P. R., Weir, B. S., Tan, Y. P., & Crous, P. W. (2017). The Colletotrichum boninense species complex. Studies in Mycology, 87, 1-41.
Elbaz, H. A., Stueckle, T. A., Tse, W., Rojanasakul, Y., & Dinu, C. Z. (2012). Digitoxin and its analogs as novel cancer therapeutics. Experimental hematology & oncology, 1(1), 1-10.
El-Benawy, N. M., Abdel-Fattah, G. M., Ghoneem, K. M., & Shabana, Y. M. (2020). Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egyptian Journal of Basic and Applied Sciences, 7(1), 267-280.
Fernandes, G. W., Arantes-Garcia, L., Barbosa, M., Barbosa, N.P., Batista, E.K., Beiroz, W., Resende, F.M., Abrahao, A., Almada, E.D., Alves, E., Alves, N.J. (2020). Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecology and Conservation, 18(4), 213-22. doi.org/10.1016/j.pecon.2020.10.004
Gadoury, D.M., Cadle-Davidson, L., Wilcox, W.F., Dry, I.B., Seem, R.C., Milgroom, M.G. (2012). Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant Patholology, 13, 1–16. DOI: 10.1111/j.1364-3703.2011.00728.x
Gindro, Harikrishnan, R., Rio, L. E. (2006). Identification and characterization of Erysiphe necator strains resistant to strobilurins. Plant Disease, 7(90), 975-980.
Goh, T.K. (1999). Single spore isolation using a hand-made glass needle. Fungal Diver., 2: 47-63.
Grove, G. G. (2004). Perennation of Uncinula necator in vineyards of Eastern Washington. Plant Dis. 88, 242-247. DOI: 10.1094/PDIS.2004.88.3.242
Gu, Y. H., & Ko, W. H. (1997). Water agarose medium for studying factors affecting germination of conidia of Ampelomyces quisqualis. Mycological Research, 101, 422–424. doi.org/10.1017/S09537562 9600295X
Gu, Y. H. (1998). Liquid culture of Ampelomyces quisqualis, a mycoparasite for biological control of powdery mildews. Japanese Journal of Phytopathology, 64(5), 458-461.
Hirata, T., & Takamatsu, S. (1996). Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience, 37(3), 283-288. doi.org/10.1007/BF02461299
Hofstein, R., Daoust, R.A., Aeschlimann, J.P., (1996). Constrains to the development of biofungicides: the example of ‘‘AQ10’’, a new product for controlling powdery mildews. Entomophaga, 41, 455-460. doi:10.1094/ PHYTO-99-6-0704
Jayasuriya, K. E., Wijesundera, R. L. C., & Deraniyagala, S. A. (2003). Isolation of anti‐fungal phenolic compounds from petioles of two Hevea brasiliensis (rubber) genotypes and their effect on Phytophthora meadii. Annals of applied biology, 142(1), 63-69.
Jenkins, B., West, J. A., & Koulman, A. (2015). A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules, 20(2), 2425-2444.
Keerthana, S., Sendhilvel, V., Raguchander, T., Varanavasiappan, S., & Swarnapriya, R. (2022). Diversity of Powdery Mildew Mycoparasite Ampelomyces quisqualis under Natural Ecosystem and Its Molecular Characterization. International Journal of Plant & Soil Science, 34(9), 48–59. doi.org/10.9734/ijpss/2022/v34i930913
Kiss, L., Russell, J.C., Szentivanyi, O., Xu, X., Jeffries, P. (2004). Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Science and Technology, 14(7), 635-51. doi.org/10.1080/09583 150410001683600
Kiss, L., Pintye, A., Zseli, G., Jankovics, T., Szentivanyi, O., Hafez, Y. M., (2009). Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelomyces. European Journal of Plant Pathology, 126, 445–451.
Li, L., Wang, Q., Yang, Y., Wu, G., Xin, X., & Aisa, H. A. (2012). Chemical components and antidiabetic activity of essential oils obtained by hydrodistillation and three solvent extraction methods from Carthamus tinctorius L. Acta Chromatographica, 24(4), 653-665.
Liyanage KK, Khan S, Brooks S, Mortimer PE, Karunarathna SC, Xu J and Hyde KD (2018) Morpho-Molecular Characterization of Two Ampelomyces spp. (Pleosporales) Strains Mycoparasites of Powdery Mildew of Hevea brasiliensis. Front. Microbiol. 9, 12. doi: 10.3389/fmicb.2018.00012
Ma, M., Hummel, H. E., & Burkholder, W. E. (1980). Estimation of single furniture carpet beetle (Anthrenus flavipes LeConte) sex pheromone release by dose-response curve and chromatographic analysis of pentafluorobenzyl derivative of (Z)-3-decenoic acid. Journal of Chemical Ecology, 6, 597-607.
Moller E.M., Bahnweg G., Sandermann H and Geiger H.H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 22(20), 6115-6116
Nakova, M. B., Nakov, B. K., & Tityanov, M. (2017). Grapevine powdery mildew (Uncinula necator (Schw.) Burr.)–a permanent issue concerning the health status of grapes cenosis in Bulgaria. In BIO Web of Conferences, 9, 01021. EDP Sciences. doi.org/10.1051/bioconf/20170901021
Naznin, H.A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M. & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9, 1-10. DOI: 10.1371/journal.pone.0086882
Oviya, R. et al. (2022). Antagonistic potential of Trichoderma hamatum against Alternaria porri causing purple blotch disease of onion through Gas chromatography-mass spectrometry (GCMS) analysis. Journal of Applied and Natural Science, 14(3), 1031- 1038. doi.org/10.31018/jans.v14i3.3814
Parag, D., Gawande, P.V., & Mate, G.D. (2017). Management of powdery mildew of okra caused by Erysiphe cichoracearum. Int. J. Curr. Microbiol. App. Sci, 6(8), 3189 - 3198.
Philipp, W.D. and Cruger, G. (1979). Parasitismus von Ampelomyces quisqualis auf Echten Mehltaupilzen an Gurken und anderen Gemusearten. Zeitschrift fur Pflanzenkrankheiten und flanzenschutz, 86, 129-142.
Sambrook, J., Russell, D.W. (2006). Fragmentation of DNA by sonication. Cold spring harbor protocols, (4), 4538. DOI: 10.1101/pdb.prot4538 
Shinde, K. R., Narute, T. K., Sonawane, R. B., & Dalvi, S. G. (2022). Studying the incidence and distribution of the grape powdery mildew disease in Maharashtra state's primary grape-growing regions. The Pharma Innovation Journal, 11(9), 723-726
Walters, D. R., Walker, R. L., & Walker, K. C. (2003). Lauric acid exhibits antifungal activity against plant pathogenic fungi. Journal of Phytopathology, 151(4), 228-230.
Wang, H., Wang, J., & Liu, J. (2010). Determination of flavour compounds in pig milk by simultaneous distillation extraction or solid phase microextraction combined with gas chromatography mass spectrometry. Chinese Journal of Animal Science, 46(17), 62-66.
Wang, Y., Chang, L., Zhao, X., Meng, X., & Liu, Y. (2012). Gas chromatography-mass spectrometry analysis on compounds in volatile oils extracted from Yuan Zhi (Radix Polygalae) and Shi Chang Pu (Acorus Tatarinowii) by supercritical CO2. Journal of Traditional Chinese Medicine, 32(3), 459-464.
Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(487), 487-511.
White, T.J., Bruns, T., Lee, S.J., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications, 18(1), 315-22. doi.org/10.1016/B978-0-12-372180-8.500 42-1
Wischmeyer, P. E. (2003). Clinical applications of L‐glutamine: past, present, and future. Nutrition in clinical Practice, 18(5), 377-385.
Ypema, H. L., & Gubler, W. D. (2000). The distribution of early season grapevine shoots infected by Uncinula necator from year to year: A case study in two California vineyards. Am. J. Enol. Vitic, 51, 1-6. DOI: 10.5344/ajev.2000.51.1.1
Section
Research Articles

How to Cite

Antimicrobial nature of specific compounds of Ampelomyces quisqualis identified from gas chromatography-mass spectrometry (GCMS) analysis and their mycoparasite nature against powdery mildew of grapes. (2023). Journal of Applied and Natural Science, 15(3), 1086-1094. https://doi.org/10.31018/jans.v15i3.4654