Article Main

Kruti Rajendra Prabhu Ashutosh Kumar https://orcid.org/0000-0003-3731-8314 Rufida Shahni Yumkhaibam Harmeet Singh Janeja Bal Krishna Nilesh Talekar

Abstract

The escalating threat of climate change is a major challenge to global food security. One of the ways to mitigate its impact is by developing crops that can withstand environmental stresses such as drought, heat, and salinity. Plant breeders have been employing conventional and modern approaches to achieve climate-resilient crops. Climate-resilient crops refer to both crop and crop varieties that exhibit improved tolerance towards biotic and abiotic stresses. These crops possess the capacity to maintain or even increase their yields when exposed to various stress conditions, such as drought, flood, heat, chilling, freezing and salinity. Conventional breeding entails selecting and crossing plants with desirable traits, while modern breeding deploys molecular techniques to identify and transfer specific genes associated with stress tolerance. However, the effectiveness of both methods is contingent on the crop species and the targeted stress. Advancements in gene editing, such as CRISPER-cas9  and genomics-assisted breeding, offer new opportunities to hasten the development of climate-resilient crops. These new technologies include Marker Assisted Selection, Genome-Wide Association Studies, Mutation breeding, Transcriptomics, Genomics, and more. The review concludes that these cutting-edge techniques have the potential to enhance the speed and precision of developing crops that can endure the challenges posed by climate change.

Article Details

Article Details

Keywords

Abiotic stresses, Conventional, Climate change , Mitigate

References
Acquaah, G. (2015). Conventional Plant Breeding Principles and Techniques. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham.
Allam, M., Revilla, P., Djemel, A., Tracy, W. F. & Ordás, B. (2016). Identification of QTLs involved in cold tolerance in sweet× field corn. Euphytica, 208, 353-365.
Alm, V., Busso, C. S., Ergon, Å., Rudi, H., Larsen, A., Humphreys, M. W. & Rognli, O. A. (2011). QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theoretical and Applied Genetics, 123, 369-382.
Almeida, G. D., Nair, S., Borém, A., Cairns, J., Trachsel, S., Ribaut, J. M., ... & Babu, R. (2014). Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Molecular breeding, 34, 701-715.
Anyaoha, C. O., Fofana, M., Gracen, V., Tongoona, P., & Mande, S. (2019). Introgression of two drought QTLs into FUNAABOR-2 early generation backcross progenies under drought stress at reproductive stage. Rice Science, 26(1), 32-41.
Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Pasture Science, 72(3), 165-172.
Azam, F. I., Chang, X. & Jing, R. (2015). Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. Euphytica, 202, 245-258.
Bakala, H. S., Singh, G. & Srivastava, P. (2020). Smart breeding for climate resilient agriculture. In Plant breeding-current and future views. IntechOpen.
Barakat, M. N., Saleh, M. S., Al-Doss, A. A., Moustafa, K. A., Elshafei, A. A., Zakri, A. M. & Al-Qurainy, F. H. (2015). Mapping of QTLs associated with abscisic acid and water stress in wheat. Biologia plantarum, 59, 291-297.
Barik, S. R., Moharana, A., Pandit, E., Behera, A., Mishra, A., Mohanty, S. P. & Pradhan, S. K. (2023). Transfer of Stress Resilient QTLs and Panicle Traits into the Rice Variety, Reeta through Classical and Marker-Assisted Breeding Approaches. International Journal of Molecular Sciences, 24(13), 10708.
Bhatta, M., Sandro, P., Smith, M. R., Delaney, O., Voss-Fels, K. P., Gutierrez, L., et al. (2021). Need for speed: manipulating plant growth to accelerate breeding cycles. Curr. Opin. Plant Biol. 60:101986. doi: 10.1016/j.pbi.2020.101986
Bhattarai, U. & Subudhi, P. K. (2018). Genetic analysis of yield and agronomic traits under reproductive-stage drought stress in rice using a high-resolution linkage map. Gene, 669, 69-76.
Cazzola, F., Bermejo, C. J., Gatti, I. & Cointry, E. (2021). Speed breeding in pulses: an opportunity to improve the efficiency of breeding programs. Crop and Pasture Science, 72(3), 165-172.
Choudhary, P., Pramitha, L., Rana, S., Verma, S., Aggarwal, P. R., & Muthamilarasan, M. (2021). Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. Physiologia Plantarum, 173(4), 1587-1596.
Dar, M. H., Zaidi, N. W., Waza, S. A., Verulkar, S. B., Ahmed, T., Singh, P. K., ... & Ismail, A. M. (2018). No yield penalty under favorable conditions paving the way for successful adoption of flood tolerant rice. Scientific reports, 8(1), 1-7.
Devi, R., Ram, S., Rana, V., Malik, V. K., Pande, V. & Singh, G. P. (2019). QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica, 215, 1-23.
Dixit, S., Singh, A., Sta Cruz, M. T., Maturan, P. T., Amante, M. & Kumar, A. (2014). Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. Bmc Genetics, 15, 1-13.
Duan, Y. B., Li, J., Qin, R. Y., Xu, R. F., Li, H., Yang, Y. C. ... & Yang, J. B. (2016). Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant molecular biology, 90, 49-62.
Gaba, Y., Pareek, A., & Singla-Pareek, S. L. (2021). Raising climate-resilient crops: journey from the conventional breeding to new breeding approaches. Current Genomics, 22(6), 450-467.
Gahlaut, V., Jaiswal, V., Tyagi, B. S., Singh, G., Sareen, S., Balyan, H. S. & Gupta, P. K. (2017). QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PloS one, 12(8), e0182857.
Gonzaga, Z. J. C., Carandang, J., Sanchez, D. L., Mackill, D. J. & Septiningsih, E. M. (2016). Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1. Euphytica, 209, 627-636.
González-Schain, N., Dreni, L., Lawas, L. M., Galbiati, M., Colombo, L., Heuer, S.& Kater, M. M. (2016). Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant and Cell Physiology, 57(1), 57-68.
Hoang, G. T., Van Dinh, L., Nguyen, T. T., Ta, N. K., Gathignol, F., Mai, C. D., ... & Gantet, P. (2019). Genome-wide association study of a panel of Vietnamese rice landraces reveals new QTLs for tolerance to water deficit during the vegetative phase. Rice, 12(1), 1-20.
Khalid, M. N., Amjad, I., Nyain, M. V., Saleem, M. S., Asif, M., Ammar, A. & Rasheed, Z. (2021). A review: tilling technique strategy for cereal crop development. International Journal of Applied Chemical and Biological Sciences, 2(5), 8-15.
Khan, S. U., Saeed, S., Khan, M. H. U., Fan, C., Ahmar, S., Arriagada, O. & Mora-Poblete, F. (2021). Advances and challenges for QTL analysis and GWAS in the plant-breeding of high-yielding: a focus on rapeseed. Biomolecules, 11(10), 1516.
Kulwal, P., Thudi, M. & Varshney, R. K. (2011). Genomics interventions in crop breeding for sustainable agriculture.
Kumar, A., Sandhu, N., Dixit, S., Yadav, S., Swamy, B. P. M., & Shamsudin, N. A. A. (2018). Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice, 11(1), 1-16.
Lekklar, C., Pongpanich, M., Suriya-Arunroj, D., Chinpongpanich, A., Tsai, H., Comai, L., ... & Buaboocha, T. (2019). Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC genomics, 20(1), 1-18.
Liu, C., Ou, S., Mao, B., Tang, J., Wang, W., Wang, H., ... & Chu, C. (2018). Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nature Communications, 9(1), 3302.
Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffith, W., Finlay, K., Chakraborty, K. (20-11). Climate change and diseases of food crops. Plant Pathol., 60, 113-121.
Malik, S. & Malik, T. A. (2015). Genetic mapping of potential QTLs associated with drought tolerance in wheat. JAPS: Journal of Animal & Plant Sciences, 25(4).
Mammadov, J., Buyyarapu, R., Guttikonda, S. K., Parliament, K., Abdurakhmonov, I. Y. & Kumpatla, S. P. (2018). Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Frontiers in plant science, 9, 886.
Manickam, S., Rajagopalan, V. R., Manoharan, B., Natesan, S. & Muthurajan, R. (2023). Genomics-Assisted Breeding for Climate-Resilient Crops. In Molecular Marker Techniques: A Potential Approach of Crop Improvement (pp. 357-368). Singapore: Springer Nature Singapore.
Ma, X., Feng, F., Wei, H., Mei, H., Xu, K., Chen, S., ... & Luo, L. (2016). Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Frontiers in Plant Science, 7, 1801.
Naqvi RZ, Siddiqui HA, Mahmood MA, Najeebullah S, Ehsan A, Azhar M, Farooq M, Amin I, Asad S, Mukhtar Z, Mansoor, S. & Asif M (2022) Smart breeding approaches in post-genomics era for developing climate-resilient food crops. Front. Plant Sci. 13:972164. doi: 10.3389/fpls.2022.972164
Paliwal, R., Röder, M. S., Kumar, U., Srivastava, J. P. & Joshi, A. K. (2012). QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theoretical and Applied Genetics, 125, 561-575.
Pandit, E., Tasleem, S., Barik, S. R., Mohanty, D. P., Nayak, D. K., Mohanty, S. P., ... & Pradhan, S. K. (2017). Genome-wide association mapping reveals multiple QTLs governing tolerance response for seedling stage chilling stress in indica rice. Frontiers in Plant Science, 8, 552.
Pantaliao, G. F., Narciso, M., Guimarães, C., Castro, A., Colombari, J. M., Breseghello, F., ... & Brondani, C. (2016). Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Genetica, 144, 651-664.
Prasch, C. M. & Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162(4), 1849-1866.
Pathirana, R. (2011). Plant mutation breeding in agriculture. CABI Reviews, (2011), 1-20.
Raj, S. R. G. & Nadarajah, K. (2023). QTL and candidate genes: Techniques and Advancement in abiotic stress resistance breeding of major cereals. International Journal of Molecular Sciences, 24(1), 6.
Raza, A., Tabassum, J., Kudapa, H. & Varshney, R. K. (2021). Can omics deliver temperature resilient ready-to-grow crops?. Critical Reviews in Biotechnology, 41(8), 1209-1232.
Razzaq, A., Kaur, P., Akhter, N., Wani, S. H. & Saleem, F. (2021). Next-generation breeding strategies for climate-ready crops. Frontiers in Plant Science, 12, 620420.
Ren, T., Fan, T., Chen, S., Chen, Y., Ou, X., Jiang, Q., ... & Li, Z. (2022). Identification and validation of quantitative trait loci for the functional stay green trait in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. Theoretical and Applied Genetics, 135(4), 1429-1441.
Revilla, P., Rodríguez, V. M., Ordás, A., Rincent, R., Charcosset, A., Giauffret, C., ... & Malvar, R. A. (2016). Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biology, 16, 1-10.
Rivero, R. M., Mittler, R., Blumwald, E. & Zandalinas, S. I. (2022). Developing climate‐resilient crops: improving plant tolerance to stress combination. The Plant Journal, 109(2), 373-389.
Rutger, J.N.; Peterson, M.L.; Hu, C.H.; Lehman, W.F. Induction of useful short stature and early maturing mutants in two japonica rice (Oryza sativa L.) cultivars. Crop Sci., 1976, 16, 631-635.
Sandhu, N., Dixit, S., Swamy, B. P. M., Raman, A., Kumar, S., Singh, S. P., ... & Kumar, A. (2019). Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice, 12(1), 1-16.
Sandhya, J., Ashwini, T., Manisha, R., Vinodha, M. & Srinivas, A. (2021). Drought tolerance enhancement with co-Overexpression of DREB2A and APX in indica rice (Oryza sativa L.). American Journal of Plant Sciences, 12(2), 234-258.
Sangodele, E. A., Hanchinal, R. R., Hanamaratti, N. G., Shenoy, V. & Kumar, V. M. (2014). Analysis of drought tolerant QTL linked to physiological and productivity component traits under water-stress and non-stress in rice (Oryza sativa L.). International Journal of Current Research and Academic Reviews, 2(5), 108-13.
Santosh Kumar, V. V., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M. V. & Chinnusamy, V. (2020). CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 26, 1099-1110.
Shamsudin, N. A. A., Swamy, B. P., Ratnam, W., Cruz, S., Teressa, M., Sandhu, N., ... & Kumar, A. (2016). Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice, 9(1), 1-13.
Sharma, S., Upadhyaya, H. D., Varshney, R. K. & Gowda, C. L. L. (2013). Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Frontiers in Plant Science, 4, 309.
Singh, G., Singh, I., Taggar, G. K., Rani, U., Sharma, P., Gupta, M. & Singh, S. (2020). Introgression of productivity enhancing traits, resistance to pod borer and Phytopthora stem blight from Cajanus scarabaeoides to cultivated pigeonpea. Physiology and Molecular Biology of Plants, 26, 1399-1410.
Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., ... & Singh, N. K. (2016). From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278-287.
Spindel, J. & Iwata, H. (2018). Genomic selection in rice breeding. In Rice Genomics, Genetics and Breeding (pp. 473-496). Springer, Singapore.
Sukumaran, S., Krishna, H., Singh, K., Mottaleb, K. A. & Reynolds, M. (2021). Progress and prospects of developing climate resilient wheat in south asia using modern pre-breeding methods. Current Genomics, 22(6), 440.
Swamy, B. P., Shamsudin, N. A. A., Rahman, S. N. A., Mauleon, R., Ratnam, W., Cruz, S., ... & Kumar, A. (2017). Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice, 10(1), 1-13.
Takagi, H., Tamiru, M., Abe, A., Yoshida, K., Uemura, A., Yaegashi, H., ... & Terauchi, R. (2015). MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 33(5), 445-449.
Talukder, S. K., Babar, M. A., Vijayalakshmi, K., Poland, J., Prasad, P. V. V., Bowden, R., & Fritz, A. (2014). Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC genetics, 15(1), 1-13.
Tiwari, J. K., Buckseth, T., Challam, C., Zinta, R., Bhatia, N., Dalamu, D., ... & Kumar, M. (2022). CRISPR/Cas genome editing in potato: current status and future perspectives. Frontiers in Genetics, 13, 827808.
Trachsel, S., Sun, D., SanVicente, F. M., Zheng, H., Atlin, G. N., Suarez, E. A., ... & Zhang, X. (2016). Identification of QTL for early vigor and stay-green conferring tolerance to drought in two connected advanced backcross populations in tropical maize (Zea mays L.). PloS one, 11(3), e0149636.
Valarmathi, M., Sasikala, R., Rahman, H., Jagadeeshselvam, N., Kambale, R., & Raveendran, M. (2019). Development of salinity tolerant version of a popular rice variety improved white ponni through marker assisted back cross breeding. Plant Physiology Reports, 24(2), 262-271.
Varshney, R. K., Bohra, A., Yu, J., Graner, A., Zhang, Q. & Sorrells, M. E. (2021). Designing future crops: genomics-assisted breeding comes of age. Trends in Plant Science, 26(6), 631-649.
Varshney, R. K., Graner, A. & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in plant science, 10(12), 621-630.
Vikram, P., Swamy, B. M., Dixit, S., Ahmed, H. U., Teresa Sta Cruz, M., Singh, A. K. & Kumar, A. (2011). qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics, 12, 1-15.
Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., ... & Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23-29.
Xiao, N., Gao, Y., Qian, H., Gao, Q., Wu, Y., Zhang, D., ... & Li, A. (2018). Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiology, 177(3), 1108-1123.
Yadav, P., Kumar, S., & Jain, V. (2016). Recent Advances in Plant Stress Physiology. Daya Publishing House® A Division of Astral International Pvt. Ltd. New Delhi–110 002.
Ye, C., Tenorio, F. A., Argayoso, M. A., Laza, M. A., Koh, H. J., Redoña, E. D., ... & Gregorio, G. B. (2015). Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics, 16, 1-10.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.L., Elliott, J., Ewert, F., Janssens, I.A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A.C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z. & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci., USA 114(35), 9326-9331.
Zhu, Y., Chen, K., Mi, X., Chen, T., Ali, J., Ye, G., ... & Li, Z. (2015). Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS One, 10(12), e0145704.
Section
Research Articles

How to Cite

A review on conventional and modern breeding approaches for developing climate resilient crop varieties: NA. (2023). Journal of Applied and Natural Science, 15(3), 987-997. https://doi.org/10.31018/jans.v15i3.4653