A comparative study on GC-MS analysis and antimicrobial activity of bioactive compounds present in aerial parts (leaf and fruit) of Ficus benghalensis L.
##plugins.themes.bootstrap3.article.main##
Abstract
Plants are being looked upon for medications derived mainly from different plant parts. The majority of the population worldwide, especially in underdeveloped nations, relies on herbal formulations for basic medical requirements. Ficus benghalensis L., member of moraceae family is renowned for its ethano-medicinal applications. In this study, polar (aqueous, methanolic, and acetone) and non polar (petroleum ether) extracts of leaves and fruits of F. benghalensis L. were investigated for their antimicrobial activity and phytochemical constituency. Antimicrobial activity was estimated by investigating Zone of Inhibition (ZOI) and Minimum Inhibitory Concentration (MIC) against gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Salmonella typhi and Escherichia coli) bacteria; and fungal strains (Aspergillus niger, Fusarium oxysporum, and Rhizopus oryzae). The diameter of ZOI ranged from 18.8 ± 1.2mm to 6.2 ± .88mm for various bacterial strains, whereas from 10.2 ± 1.3mm to 6.2 ± 1.6mm for fungal strains. Aqueous and petroleum ether extracts exhibited comparatively lesser or no activity in some cases whereas methanol and acetone extracts exhibited moderate to good activity. MIC values ranged between 50μg/μl to 0.024μg/μl against both bacterial and fungal strains. Methanolic extracts were further analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) for their phytochemical profile since they showed higher antimicrobial activity. The major compounds detected in leaf extracts were Lup-20(29)-en-3-one (20.45%), Lupeol (17.40%), Beta amyrone (9.07%), Squalene (5.17), Stigmasta-5-en-3-ol (5.62%), Vitamin-E (3.89%), and n-Hexadecanoic acid (1.32%); and in fruit extract were Octadecatrienoic acid (15.24%), 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl (14.89%), 5-Hydroxymethylfurfural (15.32%), 24-Norursa-3,12-diene (2.79%), and 9,12-Octadecadienoic acid (z, z)-2-hydroxy-1- (hydroxymethyl) ethyl (2.07%). This study supports using F. benghalensis L. in microbial infection therapy.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Antimicrobial activity, GC-MS analysis, Ficus benghalensis L., , Phytochemical estimation
Ahmad, S., Rao, H., Akhtar, M., Ahmad, I., Hayat, M.M., Iqbal, Z., & Nisar-ur, Rahman. (2011). Phytochemical composition and pharmacological prospectus of Ficus benghalensis Linn. (Moraceae) – A review. Journal of medicinal plant research, (5), 6393–6400. Doi: 10.5897/JMPR11.455
Alakurtti, S., Mäkelä, T., Koskimies, S. & Yli-Kauhaluoma, J. (2006). Pharmacological properties of the ubiquitous natural product betulin. European Journal of Pharmacoogical Science, 29(1), 1-13. Doi: 10.1016/j.ejps.2006.04.006
Ara, I., Shinwari, M.M.A., Rashed, S.A. & Bakir, M.A. (2013). Evaluation of Antimicrobial Properties of Two Different Extracts of Juglans Regia Tree Bark and Search for Their Compounds Using Gas Chromatohraphy-Mass Spectrum. International Journal of Biology, 5, 92–102. Doi: 10.5539/ijb.v5n2p92.
Archana, R., Kanchana, G. &Rubalakshmi, G. (2014). Identification of bioactive compounds from marine sponge—Spongia tostaby GC–MS analysis. World Journal of Pharmacological Sciences, 3(11), 439–445.
Belakhdar, G., Benjouad, A. & Abdennebi, E.H. (2015). Determination of some bioactive chemical constituents from Thesium humile Vahl. Journal of Material and Environmental Science, 6(10), 2778-2783.
Berghe, V.A. & Vlietinck, A.J. (1991). Screening methods for antibacterial and antiviral agents from higher plants. Methods in Plant Biochemistry, 6, 47–68.
Bhakuni, D.S., Bittner, A.K., & Marticorena, C. (1974). Antimicrobial activity of certain Sudanese plants used in folklore medicine. Fitoterapia, 56(2), 103-109.
Bharathkumar, P., Marikannan, M., Lavanya, B. & Suthakaran Rand Darlin Quine, S. (2011). GC-MS analysis of methanolicextract of Litsea decanensis Gamble and its free radicalscavenging activity. Journal of Pharmaceutical Research, 4, 100-103.
Bhawana, Robin, Kaur, J., Pal Vig, A., Arora, S., & Kaur, R. (2018). Evaluation of antibacterial potential of Ficus species. Journal of Pharmaceutical Sciences & Research, 10(5), 1251-1255.
Bland, M., Vermillion, S., Soper, D., Austin, M. 2001. Antibiotic resistance patterns of group B streptococci in late third-trimester rectovaginal cultures. American Journal of Obstetrics and Gynecology, 184(6), 1125–1126. Doi: 10.1067/mob.2001.115478
Bourjot, M., Leyssen, P., Eydoux, C., Guillemot, J., Canard, B., Rasoanaivo, P., Guéritte, F. & Litaudon, M. (2012). Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia, 83(6), 1076-80. Doi: 10.1016/j.fitote.2012.05.004
Chen, Z., Liu, Q., Zhao, Z., Bai, B., Sun, Z., Cai, L., Fu, Y., Ma, Y., Wang, Q. & Xi, G. (2021). Effect of hydroxyl on antioxidant properties of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4 H-pyran-4-one to scavenge free radicals. RSC advances, 11(55), 34456-34461. Doi: 10.1039/d1ra06317k
Durazzo, A., Lucarini, M., Souto, E.B., Cicala, C., Caiazzo, E., Izzo, A.A., Novellino, E. & Santini, A. (2019). Polyphenols: A Concise Overview on the Chemistry, Occurrence, and Human Health. Phytotherapy Research, 33, 2221–2243. Doi: 10.1002/ptr.6419.
Eloff, J.N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica, 64, 711–3. Doi: 10.1055/s-2006-957563
Flieger, J., Flieger, W., Baj, J. & Maciejewski, R. (2021). Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials, 14, 4135. Doi: 10.3390/ma14154135.
Gabay, O., Sanchez, C., Salvat, C., Chevy, F., Breton, M., Nourissat, G., Wolf, C., Jacques, C. & Berenbaum, F. (2010). Stigmasterol: A phytosterol with potential antiosteoarthritic properties. Osteoarthritis Cartilage, 18(1):106-16. Doi: 10.1016/j.joca.2009.08.019
Gaherwal, S. (2013). Anti-bacterial activity of Ficus benghalensis (banyan) fruit extract against different bacteria. International Journal of Microbiological Research, 4(2), 177-179.
Ghosh, G., Panda, P., Rath, M., Pal, A., Sharma, T. & Das, D. (2015). GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves. Pharmacognosy Research, 7(1), 110–113.
Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K. & Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. Journal of Food Science and Technology, 52(2), 1212–1217. Doi: 10.1007/s13197-013-1105-9.
Grover, N. & Patni, V. (2013). Phytochemical characterization using various solvent extracts and GC-MS analysis of methanolic extract of Woodfordia fruticosa (L.) Kurz. Leaves. International Journal of Pharmacy & Pharmacological Science, 5(4), 291-295.
Gupta, R., Bajpai, K.G., Johri, S. & Saxena, A.M. (2007). An overview of Indian novel traditional medicinal plants with anti-diabetic potentials. African Journal of Traditional, Complementary, and Alternative Medicines, 5, 1-17.
Gutiérrez-del-Río, I., Fernández, J. & Lombó, F. (2018). Plant Nutraceuticals as Antimicrobial Agents in Food Preservation: Terpenoids, Polyphenols and Thiols. International Journal of Antimicrobial Agents, 52, 309–315. Doi: 10.1016/j.ijantimicag.2018.04.024.
Hata, K., Hori, K. & Takahahsi, S. (2002). Differentiation and apoptosis-inducing activities by pentacyclictriterpenes on a mouse melanoma cell line. Journal of Natural Products, 65(5), 645-8 Doi: 10.1021/np0104673.
Igwe, O.U. & Okwu, D.E. (2013). GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the seeds of Brachystegia eurycoma (HARMS). Asian Journal of Plant Science and Research, 3(2), 47-54.
Isah, T. (2019). Stress and Defense Responses in Plant Secondary Metabolites Production. Biological Research, 52(39). Doi: 10.1186/s40659-019-0246-3.
Jang, Y.W., Jung, J.Y., Lee, I.K., Kang, S.Y. & Yun, B.S. (2012). Nonanoic acid, an antifungal compound from Hibiscus syriacus Ggoma. Mycobiology, 40, 145–146.
Joseph, B. & Raj, S.J. (2010). Phytopharmacological andphytochemical properties of three Ficus species-An overview. International Journal of Pharmacy and Biological Science, 1, 246-53.
Karthikeyan, M., Subramanian, P., & Ramalingam, S.K. (2019). Phytochemical analysis in economically important Ficus Benghalensis L. and Ficus Krishnae C. DC. using GC-MS. International Journal of Pharmarma and Bio Science, 10, 5-13. DOI: http://dx.doi.org/10.22376/ijpbs.2019.10.4.p5-12
Kliebenstein, D.J. & Osbourn, A. (2012). Making New Molecules—Evolution of Pathways for Novel Metabolites in Plants. Current Opinion in Plant Biology, 15, 415–423. Doi: 10.1016/j.pbi.2012.05.005.
Kuruppu, A. I., Paranagama, P. & Goonasekara C. (2019). Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharmaceutical Journal, 27, 563-565, Doi:10.1016/j.jsps.2019.02.004
Lansky, E.P., Paavilainen, H.M., Pawlus, A.D. & Newman, R.A. (2008). Ficus spp. (fig): Ethnobotany and potential as anticancerand antiinflammatory agents. Journal of Ethnopharmacology, 119, 195-213.
Lee, T.K., Poon, R. T. P., Wo, L. Y., Ma, S., Guan, X. Y., Myers, J. N., Altevogt, P. & Yuen, A. P. W. (2007). Lupeol suppresses cisplatin-induced nuclear factor-kappaB activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model. Cancer Research, 67(18), 8800-8809. Doi: 10.1158/0008-5472.
Li, M.M., Wu, L.Y. & Zhao, T. (2011) The protective role of 5-HMF against hypoxic injury. Cell Stress and Chaperones, 16(3), 267–273. Doi: 10.1007/s12192-010-0238-2
LiraWde, M., dosSantos, F.V., Sannomiya, M., Rodrigues, C.M., Vilegas, W. & Varanda E.A. (2008). Modulatory effect of Byrsonima basiloba extracts on the mutagenicity of certain direct and indirect-acting mutagens in Salmonella typhimurium assays. Journal of Medicinal Food, 11(1), 111-119. Doi: 10.1089/jmf.2007.553.
Maree, J., Kamatou, G., Gibbons, S., Viljoen, A. & Van Vuuren, S. (2014). The Application of GC-MS Combined with Chemometrics for the Identification of Antimicrobial Compounds from Selected Commercial Essential Oils. Chemometrics and Intelligent Laboratory Systems, 130, 172–181. Doi: 10.1016/j.chemolab.2013.11.004.
Matsuda, S.P., Darr, L.B., Hart, E.A., Herrera, J.B., McCann, K.E., Meyer, M.M., Pang, J. & Schepmann H.G. (2000). Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation. Organic Letters, 2(15), 2261-2263. Doi: 10.1021/ol006018w.
Mierziak, J., Kostyn, K. &Kulma, A. (2014). Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules, 19:16240–16265. Doi: 10.3390/molecules191016240.
Muniyan, A.S., & Anandhan, A. S. (2015). Evaluation of Antifungal Activity of Crude Leaf Extracts of Indian Sacred Trees. Journal of Pharmaceutical, Chemical and Biological Sciences, 3(2), 240-246.
Okoye, N.N., Ajaghaku, D.L., Okeke, H.N., Ilodigwe, E.E., Nworu, C.S. & Okoye, F.S.C. (2014). beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound antiinflammatory activity. Pharmaceutical Biology, 52 (11), 1478-86. Doi: 10.3109/13880209.2014.898078.
Okwu, D.E. & Morah, F.N. I. (2006). The potentials of Garcinia kola seed as source for nutraceuticals. Journal of Medecinal and Aromomatic Plant Science, 28, 605-11.
Papitha, R., Ravi, L., Kaviyarasi, R. & Bhuvaneswari, M. (2017). Phytochemical investigation, gas chromatography–mass spectrometry, and Fourier transform infrared analysis in adventitious roots of Ficus benghalensis L. International Journal of Green Pharmacy, 11(2), 127-131.
Parimalakrishnan, S., Akalanka, D., Rajeswari, J. & Ravikumar, K. (2015). Extraction and Characterization of Phytoconstituents Cleome chelidonii by GCMS. International Journal of Chemical and Pharmaceutical Sciences, 6(1), 63–69. https://doi.org/10.1007/s12010-021-03742-2
Parthipan, B., Suky, M. G. T. & Mohan, V. R. (2015). GC-MS Analysis of phytocomponents in Pleiospe rmium alatum (Wal.l ex Wight & Arn.) Swingle, (Rutaceae). Journal of Pharmacognosy and Phytochemistry, 4(1), 216–222.
Patrícia, D. O. A., Ana, P. A., Boleti, A. L. R.,Geane, A. L.,Valdir, F. V. J. & Emerson, S. L. (2015). Antiinflammatory Activity of Triterpenes Isolated from Protium paniculatum Oil-Resins. Evidence Based Complementary and Alternative Medicine, 2015:293768. Doi: 10.1155/2015/29 3768.
Pizzi, A. (2019). Tannins: Prospectives and Actual Industrial Applications. Biomolecules, 9:344. Doi: 10.3390/biom9080344.
Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., Miesbauer, O. & Eisner, P. (2021). Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules, 26:1244. Doi: 10.3390/molecules2605 1244.
Pullaiah, T. (2006). Encyclopedia of World Medicinal Plants. Regency Publication, New Delhi, India.
Radhakrishnan, A. K., Lee, A. L., Wong, P. K., Kaur, J., Aung, J. & Nesaretnam, K. (2014). Comparable effects on immune modulation following daily supplementation with tocotrienol-rich fraction (TRF) or alpha-tocopherol in normal human volunteers. British Journal of Nutrition, 101(6), 810–815. Doi: 10.1017/S0007114508039998.
Rai, A., Saito, K. & Yamazaki, M. (2017). Integrated Omics Analysis of Specialized Metabolism in Medicinal Plants. Plant Journal, 90, 764–787. Doi: 10.1111/tpj.13485.
Raman, B. V., La, S., Saradhi, P. M., Rao, N. B., Krishna, A. N. V. & Radhakrishnan, T. (2012). Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian Journal of Pharmaceutical and Clinical Research, vol. 5(2), 99–106.
Rizvi, S., Raza, S. T., Ahmed, F., Ahmad, A., Abbas, S. & Mahdi, F. (2014). The role of vitamin E in human health and some diseases. Sultan Qaboos University Medical Journal, 14(2), 157–165. PMID: 24790736
Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R. & Ghasemzadeh, A. (2016). Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 836. Doi: 10.3390/molecules21070836
Ryszard, A. (2009). Squalene: a natural antioxidant? European Journal of Lipid Science and Technology. 111:411–412. Doi: 10.1002/ejlt.200900102.
Safdar, M., Naqvi, S.A., Anjum, F., Pasha, I., Shahid, M., Waliullah Jaskani, M.J., Khan, I.A. & Aadil, R.M. (2021). Microbial Biofilm Inhibition, Antioxidants, and Chemical Fingerprints of Afghani Pomegranate Peel Extract Documented by Gas Chromatography–Mass Spectrometry and Fourier Transformation Infrared. Journal of Food Processing and Preservation 45:e15657. Doi: 10.1111/jfpp.15657.
Saharan, V., Tushir, S., Singh, J., Kumar, N., Chhabra, D., & Kapoor, R. K. (2023). Application of MOGA-ANN tool for the production of cellulase and xylanase using de-oiled rice bran (DORB) for bioethanol production. Biomass Conversion and Biorefinery. 1-13. https://doi.org/10.1007/s13399-023-04022-1
Sahin, N., Kula, I. &Erdogan, Y. (2006). Investigation of antimicrobial activities of nonanoic acid derivatives. Fresenius Environmental Bulletin, 15, 141–143.
Saleem, M., et al. (2008). Lupeol inhibits growth of highly aggressive human metastatic melanoma cel ls in vitro and in vivo by inducing apoptosis. Clinical Cancer Research, 14 (7), 2119-2127. Doi: 10.1158/1078-0432.CCR-07-4413
Saleem, M.M., Adhami, V.M., Hafeez, B.B. & Mukhtar, H. (2009). Suppression of cFLIP by lupeol, a dietary triterpene, is sufficient to overcome resistance to TRAIL-mediated apoptosis in chemoresistant human pancreatic cancer cells. Cancer Research, 69 (3), 1156-1165. Doi: 10.1158/0008-5472.CAN-08-2917
Saleem., M. (2009). Lupeol, a novel antiinflammatory and anti-cancer dietary triterpene. Cancer letters, 285(2), 109-115.
Salehi B., Ata A., Anil Kumar N.V., Sharopov F., Alarcón K.R., Ortega A.R., Ayatollahi S.A., Fokou P.V.T., Kobarfard F.,Zakaria Z.A., Iriti M., Taheri Y., Martorell M., Sureda A., Setzer W.N., Durazzo A., Lucarini M., Santini A., Capasso R., Ostrander E.A., Rahman A., Choudhary M.I., Cho W.C. & Sharifi-Rad J. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551.
Semwal, P. & Painuli, S. (2019). Antioxidant, antimicrobial, and GC-MS profiling of Saussurea obvallata (Brahma Kamal) from Uttarakhand Himalaya. Clinical Phytoscience, 5 (1), 1-11.
Shin, J. (2017). Gamma-tocopherol supplementation amelioratedhyper-inflammatory response during the early cutaneouswound healing in alloxan-induced diabetic mice.Experimental Biological Medicine. 242: 505-515. Doi: 10.1177/1535370216683836.
Singh, B. & Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. Biotechnology, 5(2), 129-51. Doi: 10.1007/s13205-014-0220-2.
Sudha, T., Chidambarampillai, S. & Mohan, V. R. (2013). GC-MS analysis of bioactive components of aerial parts of Fluggea leucopyrus wild. (Euphorbiaceae). Journal of Applied Pharmaceutical Science, 3(05), 126–130. Doi: 10.7324/JAPS.2013.3524
Sushma,V., Pal, S.M. & Viney, C. (2017). GC-MS Analysis of Phytocomponents in the Various Extracts of Shorea robusta Gaertn F. International Journal of Pharmacognosy and Phytochemical Research, 9, 783–788.
Swamy, M.K. & Sinniah, U.R. (2015). A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules, 20 (5), 8521-8547
Teoh, Y. P. & Mashitah, M. D., (2015). Effect of Temperature on Schizophyllum commune Growth and 4H-pyran-4-one, 2, 3-dihydro-3, 5-dihydroxy-6-methyl-Production using a Bubble Column Bioreactor. Chiang Mai Journal of Science 42(3), 539-548.
Tharini, P., Sivaraj, C., Arumugam, P., & Manimaran, A. (2018). Antioxidant activities and GCMS analysis fruits of Ficus benghalensis L. Journal of Pharmacognosy and Phytochemistry, 7(4), 518-523.
Tkachenko, H., Buyun, L., Osadowski, Z., Honcharenko, V., Prokopiv, A. (2017). The antimicrobial efficacy of ethanolic extract obtained from Ficus benghalensis L. (moraceae) leaves. Agrobiodiversity, 438–445.
Uma, B., Prabhakar, K. & Rajendran, S. (2009). In vitro antimicrobial activity and phytochemical analysis of Ficus religiosa L. and Ficus benghalensis L. against Diarrhoeal Enterotoxigenic E. coli. Ethnobotanical leaflets, (4),7.
Valle, D.L., Puzon, J.J.M., Cabrera, E.C. & Rivera, W.L. (2016). Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper Betle L. against Multidrug-Resistant Bacteria. Evidence-Based Complementary Alternative Medicine, 4976791, Doi: 10.1155/2016/4976 791.
Verotta, L., Tato, M., El Sebakhy, N.A. &Taoima, S.M. (1998). Cycloartane triterpene glycosides from Astragalus sieberi., Phytochemistry Oxford, Oxford, Elsevier Science Ltd, 48(8),1403-1409.
Wagner, K., Roth, C., Willför, S., Musso, M., Petutschnigg, A., Oostingh, G.J. & Sclmabel, T. (2019). Identification of Antimicrobial Compounds in Different Hydrophilic Larch Bark Extracts. BioResources, 14, 5807–5815. doi: 10.153 m76/biores.14.3.5807-5815.
Wang G.F., Shi L. P., Ren Y. D., Liu Q. F., Liu H. F., Zhang R. J., Li Z., Zhu F. H., He P. L., Tang W., Tao P. Z., Li C., Zhao W. M. & Zuo J. P. (2009). Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Research, 83, 186–190. Doi: 10.1016/j.antiviral.2009.05.002.
You, Y.J., Nam, N.H., Kim, Y., Bae, K.H. & Ahn, B.Z. (2003). Antiangiogenic activity of lupeol from Bombax ceiba. Phytotherapy Research, 17 (4), 341-344. Doi: 10.1002/ptr.1140.
Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., Zhang, X. & Xu, T.C. (2013). In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. Journal of agricultural and food chemistry, 61,(44), 10604-10611. https://doi.org/10.1021/jf403098y
Zothanpuia Passari, A. K., Chandra, P., Leo, V. V., Mishra, V. K., Kumar, B. & Singh, B. P. (2017). Production of potent antimicrobial compounds from Streptomyces cyaneofuscatus associated with fresh water sediment. Frontiers in microbiology, 8, 68 -68. https://doi.org/10.3389/fmicb.2017.00068
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)