Newly engineered nanoparticles as potential therapeutic agents for plants to ameliorate abiotic and biotic stress
Article Main
Abstract
Food scarcity is a global concern that is growing every year. Biotic stress factors like pathogenic fungi, bacteria, viruses, and nematode pests aggravate the situation by imparting detrimental effects on crops by unfavourably affecting their growth and yield. Abiotic stress factors include extreme heat and cold, drought, high salinity, floods, and heavy metal toxicity. Annually, millions of hectares of agricultural land worldwide are lost to these stress elicitors. To combat these stress factors, plants have developed strong defense mechanisms, including protective physical barriers, the overexpression of certain genes, and the production of secondary metabolites. Nanotechnology offers numerous novel and sustainable substitutes for conventional agriculture due to its potential uses in this field. Newly engineered nanoparticles (NENPs) are synthesized nanoparticles that are 1-100 nm in size and possess unique properties that help plants combat abiotic and biotic stress factors efficiently. NENPs are designed to ameliorate stress, alleviate nutrient inadequacy in soil, improve plant nutritional value, and overall boost crop productivity. This review illustrates the applications of various NENPs, which help plants cope with biotic and abiotic stresses. It highlights the effective induced changes that develop in the morphology, physiology, and biochemistry of different plants under stress and the role of NENPs. This review also highlights the toxic and deleterious effects of NENPs on the soil when used in higher doses and concludes with the prospects of NENPs in agriculture.
Article Details
Article Details
Applications, Newly engineered nanoparticles, Plant abiotic stress, Plant biotic stress, Toxicity
Food and Agriculture Organization of the United States (FAO) statistical yearbook (2021). Food & Agricultural Organization, 2021
El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Desoky, E. M., Babalghith, A. O., El-Tahan, A. M., Ibrahim, O. M., Ebrahim, A. A. M., Abd El-Mageed, T. A., Elrys, A. S., Elbadawi, A. A., El-Tarabily, K. A, & AbuQamar, S. F. (2022). Role of nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Frontiers in plant science, 13, 946717. https://doi.org/10.3389/fpls.2022.946717
Ashapkin, V. V., Kutueva, L. I., Aleksandrushkina, N. I. & Vanyushin, B. F. (2020). Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses. International Journal of Molecular Sciences, 21(20), 7457. https://doi.org/10.3390/ijms21207457
Giudice, G., Moffa, L., Varotto, S., Cardone, M. F., Bergamini, C., De Lorenzis, G., Velasco, R., Nerva, L. & Chitarra, W. (2021). Novel and emerging biotechnological crop protection approaches. Plant biotechnology journal, 19(8), 1495-1510. https://doi.org/10.1111/pbi.13605
Dormatey, R., Sun, C., Ali, K., Coulter, J. A., Bi, Z. & Bai, J. (2020). Gene Pyramiding for Sustainable Crop Improvement against Biotic and Abiotic Stresses. Agronomy, 10(9), 1255. https://doi.org/10.3390/agronomy10091255
Kumar, P. & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in sustainable food systems, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781
He, X., Deng, H. & Hwang, H. M. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1-21. https://doi.org/10.1016/j.jfda.2018.12.002
Khan, S. T., Adil, S. F., Shaik, M. R., Alkhathlan, H. Z., Khan, M. & Khan, M. (2021). Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants (Basel, Switzerland), 11(1), 109. https://doi.org/10.3390/plants11010109
Singh, R. P., Handa, R. & Manchanda, G. (2021). Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of controlled release, 329, 1234-1248. https://doi.org/10.1016/j.jconrel.2020.10.051
Shrivastava, P. & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of biological sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
Manzoor, N., Ali, L., Ahmed, T., Noman, M., Adrees, M., Shahid, M. S., Ogunyemi, S.O., Radwan, K.S., Wang, G. & Zaki, H. E. (2022). Recent Advancements and Development in nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants. Frontiers in plant science, 13, 951752. https://doi.org/10.3389/fpls.2022.951752
Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S. A., Sharma, A., Song, H., ur Rehman, S. & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and environmental safety,147, 935–944. https://doi.org/10.1016/j.ecoenv.2017.09.066
Ansari, S., Ansari, M.A. & Husen, A. (2022). Augmenting Crop Productivity in Stress Environment Vol. 11. Springer Nature, Switzerland.
Husen, A. (2022). Environmental pollution and medicinal plants. CRC Press.
Mondal, R., Dam, P., Chakraborty, J., Paret, M. L., Katı, A., Altuntas, S., Sarkar, R., Ghorai, S., Gangopadhyay, D., Mandal, A. K. & Husen, A. (2022). Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon, 8(12), e12207. https://doi.org/10.1016/j.heliyon.2022.e12207
Husen, A., Iqbal, M., Sohrab, S. S. & Ansari, M. K. A. (2018). Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agriculture & Food Security, 7(1), 1-14. https://doi.org/10.1186/s40066-018-0194-0
Mishra, S., Kumar, S., Saha, B., Awasthi, J., Dey, M., Panda, S. K. & Sahoo, L. (2016). Crosstalk between salt, drought, and cold stress in plants: toward genetic engineering for stress tolerance. Abiotic stress response in plants, 57-88. https://doi.org/10.1002/9783527694570.ch4
Siddiqi, K. S. & Husen, A. (2019). Plant response to jasmonates: Current developments and their role in changing environment. Bulletin of the National Research Centre, 43(1), 1-11. https://doi.org/10.1186/s42269-019-0195-6
Roșca, M., Mihalache, G., & Stoleru, V. (2023). Tomato responses to salinity stress: From morphological traits to genetic changes. Frontiers in plant science, 14, 1118383. https://doi.org/10.3389/fpls.2023.1118383
Zulfiqar, F. & Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry: PPB, 160, 257–268. https://doi.org/10.1016/j.plaphy.2021.01.028
Khalid, M. F., Iqbal Khan, R., Jawaid, M. Z., Shafqat, W., Hussain, S., Ahmed, T., Rizwan, M., Ercisli, S., Pop, O. L. & Alina Marc, R. (2022). Nanoparticles: The Plant Saviour under Abiotic Stresses. Nanomaterials (Basel, Switzerland), 12(21), 3915. https://doi.org/10.3390/nano12213915
Gohari, G., Zareei, E., Rostami, H., Panahirad, S., Kulak, M., Farhadi, H., Amini, M., Martinez-Ballesta, M. D. C. & Fotopoulos, V. (2021). Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions. Ecotoxicology and EnvironmentalSsafety, 220, 112402. https://doi.org/10.1016/j.ecoenv.2021.112402
Elshoky, H. A., Yotsova, E., Farghali, M. A., Farroh, K. Y., El-Sayed, K., Elzorkany, H. E., Rashkov, G., Dobrikova, A., Borisova, P., Stefanov, M., Ali, M. A. & Apostolova, E. (2021). Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. Plant physiology and Biochemistry: PPB, 167, 607–618. https://doi.org/10.1016/j.plaphy.2021.08.039
Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R. M. A., Alkahtani, J., Dwiningsih, Y. & Elshikh, M. S. (2022). Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Frontiers in plant science, 13, 932861. https://doi.org/10.3389/fpls.2022.932861
Ali, B., Saleem, M. H., Ali, S., Shahid, M., Sagir, M., Tahir, M. B., Qureshi, K. A., Jaremko, M., Selim, S., Hussain, A., Rizwan, M., Ishaq, W. & Rehman, M. Z. (2022). Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. Frontiers in Plant Science, 13, 973782. https://doi.org/10.3389/fpls.2022.973782
Ye, Y., Landa, E. N., Cantu, J. M., Hernandez-Viezcas, J. A., Nair, A. N., Lee, W. Y., Sreenivasan, S. T., & Gardea-Torresdey, J. L. (2022). A double-edged effect of manganese-doped graphene quantum dots on salt-stressed Capsicum annuum L. The Science of the total environment, 844, 157160. https://doi.org/10.1016/j.scitotenv.2022.157160
Sheikhalipour, M., Esmaielpour, B., Gohari, G., Haghighi, M., Jafari, H., Farhadi, H., Kulak, M. & Kalisz, A. (2021). Salt Stress Mitigation via the Foliar Application of Chitosan-Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia (Stevia rebaudiana Bertoni). Molecules (Basel, Switzerland), 26(13), 4090. https://doi.org/10.3390/molecules26134090
Noman, M., Ahmed, T., Shahid, M., Niazi, M. B. K., Qasim, M., Kouadri, F., Abdulmajeed, A. M., Alghanem, S. M., Ahmad, N., Zafar, M. & Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety, 217, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264
Yazıcılar, B., Böke, F., Alaylı, A., Nadaroglu, H., Gedikli, S. & Bezirganoglu, I. (2021). In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. Plant Cell Reports, 40(1), 29–42. https://doi.org/10.1007/s00299-020-02613-0
Ivani, R., Sanaei Nejad, S. H., Ghahraman, B., Astaraei, A. R. & Feizi, H. (2018). Role of bulk and Nanosized SiO2 to overcome salt stress during Fenugreek germination (Trigonella foenum- graceum L.). Plant Signaling & Behavior, 13(7), e1044190. https://doi.org/10.1080/15592324.2015.1044190
Gohari, G., Farhadi, H., Panahirad, S., Zareei, E., Labib, P., Jafari, H., Mahdavinia, G., Hassanpouraghdam, M. B., Ioannou, A., Kulak, M. & Fotopoulos, V. (2023). Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. International Journal of BiologicalCacromolecules, 224, 893–907. https://doi.org/10.1016/j.ijbiomac.2022.10.175
Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. Sustainable crop Production, 3. http://dx.doi.org/10.5772/intechopen.88434
Ahmed, S., Khan, M. T., Abbasi, A., Haq, I. U., Hina, A., Mohiuddin, M., Tariq, M. A. U. R., Afzal, M. Z., Zaman, Q. U., Ng, A. W. M. & Li, Y. (2023). Characterizing stomatal attributes and photosynthetic induction in relation to biochemical changes in Coriandrum sativum L. by foliar-applied zinc oxide nanoparticles under drought conditions. Frontiers in Plant Science, 13, 1079283. https://doi.org/10.3389/fpls.2022.1079283
Raeisi Sadati, S. Y., Jahanbakhsh Godehkahriz, S., Ebadi, A., & Sedghi, M. (2022). Zinc Oxide Nanoparticles Enhance Drought Tolerance in Wheat via Physio-Biochemical Changes and Stress Genes Expression. Iranian Journal of biotechnology, 20(1), e3027. https://doi.org/10.30498/ijb.2021.280711.3027
Dola, D. B., Mannan, M. A., Sarker, U., Mamun, M. A. A., Islam, T., Ercisli, S., Saleem, M. H., Ali, B., Pop, O. L., & Marc, R. A. (2022). Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Frontiers in plant science, 13, 992535. https://doi.org/10.3389/fpls.2022.992535
Ayyaz, A., Fang, R., Ma, J., Hannan, F., Huang, Q., Athar, H. U., Sun, Y., Javed, M., Ali, S., Zhou, W. & Farooq, M. A. (2022). Calcium nanoparticles (Ca-NPs) improve drought stress tolerance in Brassica napus by modulating the photosystem II, nutrient acquisition, and antioxidant performance. NanoImpact, 28, 100423. https://doi.org/10.1016/j.impact.2022.100423
Zahedi, S. M., Hosseini, M. S., Daneshvar Hakimi Meybodi, N. & Peijnenburg, W. (2021). Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. Journal of the Science of Food and Agriculture, 101(12), 5202–5213. https://doi.org/10.1002/jsfa.11167
Ramzan, M., Naz, G., Shah, A. A., Parveen, M., Jamil, M., Gill, S. & Sharif, H. M. A. (2023). Synthesis of phytostabilized zinc oxide nanoparticles and their effects on physiological and anti-oxidative responses of Zea mays (L.) under chromium stress. Plant Physiology and Biochemistry: PPB, 196, 130–138. https://doi.org/10.1016/j.plaphy.2023.01.015
Zhou, P., Zhang, P., He, M., Cao, Y., Adeel, M., Shakoor, N., Jiang, Y., Zhao, W., Li, Y., Li, M., Azeem, I., Jia, L., Rui, Y., Ma, X. & Lynch, I. (2023). Iron-based nanomaterials reduce cadmium toxicity in rice (Oryza sativa L.) by modulating phytohormones, phytochelatin, cadmium transport genes and iron plaque formation. Environmental pPollution (Barking, Essex: 1987), 320, 121063. https://doi.org/10.1016/j.envpol.2023.121063
Wang, S., Fu, Y., Zheng, S., Xu, Y. & Sun, Y. (2022). Phytotoxicity and Accumulation of Copper-Based Nanoparticles in Brassica under Cadmium Stress. Nanomaterials (Basel, Switzerland), 12(9), 1497. https://doi.org/10.3390/nano12091497
Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Hussain, M., Ejaz, M., & Yasmeen, F. (2019). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science, 43, 387-395. https://doi.org/10.1007/s40995-017-0417-4
Djanaguiraman, M., Belliraj, N., Bossmann, S. H. & Prasad, P. V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS omega, 3(3), 2479-2491. https://doi.org/10.1021/acsomega.7b01934
Wang, A., Li, J., Al-Huqail, A. A., Al-Harbi, M. S., Ali, E. F., Wang, J., Ding, Z., Rekaby, S. A., Ghoneim, A. M. & Eissa, M. A. (2021). Mechanisms of Chitosan Nanoparticles in the Regulation of Cold Stress Resistance in Banana Plants. Nanomaterials (Basel, Switzerland), 11(10), 2670. https://doi.org/10.3390/nano11102670
Chattha, M. U., Amjad, T., Khan, I., Nawaz, M., Ali, M., Chattha, M. B., Ali, H. M., Ghareeb, R. Y., Abdelsalam, N. R., Azmat, S., Barbanti, L. & Hassan, M. U. (2022). Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. Frontiers in Plant Science, 13, 920570. https://doi.org/10.3389/fpls.2022.920570
Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., Jan, S. & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101207. https://doi.org/10.1016/j.jksus.2020.10.004
Mahmoud, L. M., Dutt, M., Shalan, A. M., El-Kady, M. E., El-Boray, M. S., Shabana, Y. M.B. & Grosser, J. W. (2020). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. South African Journal of Botany, 132, 155-163. https://doi.org/10.1016/j.sajb.2020.04.027
Haghighi, M., Afifipour, Z.& Mozafarian, M. (2012). The effect of N-Si on tomato seed germination under salinity levels. Journal of Biological and Environmental Sciences, 6(16).
Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M. J., Alyemeni, M. N., Brestic, M., Zhang, X., Ali, S., & Huang, L. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant physiology and biochemistry: PPB, 156, 221–232. https://doi.org/10.1016/j.plaphy.2020.09.018
Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., Nguyen, A.T., Dinh, N.T.T., Hoang, S.A., & Van Ha, C. (2021). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant GrowthRregulation, 1-12. https://doi.org/10.1007/s00344-021-10301-w
Faraji, J. & Sepehri, A. (2020). Exogenous nitric oxide improves the protective effects of TiO 2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. Journal of Soil Science and Plant Nutrition, 20, 703-714. https://doi.org/10.1007/s42729-019-00158-0
Semida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-Mageed, S. A., Rady, M. M. & Ali, E. F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 10(2), 421. https://doi.org/10.3390/plants10020421
Wenli, S., Shahrajabian, M. H. & Huang, Q. (2020). Soybean seeds treated with single walled carbon nanotubes (SwCNTs) showed enhanced drought tolerance during germination. International Journal of Advanced Biological and Biomedical Research, 8, 9-16. https://doi.org/10.33945/sami/ijabbr.2020.1.2
Ghorbanpour, M., Mohammadi, H. & Kariman, K. (2020). Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environmental science: Nano, 7(2), 443-461. https://doi.org/10.1039/C9EN00973F
Faryal, S., Ullah, R., Khan, M. N., Ali, B., Hafeez, A., Jaremko, M. & Qureshi, K. A. (2022). Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic Pigments, Osmolytes Biosynthesis and Antioxidant Biosystems. Molecules (Basel, Switzerland), 27(18), 5744. https://doi.org/10.3390/molecules27185744
Younis, A. A., Khattab, H. & Emam, M. M. (2020). Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biol. Plant, 64, 343-352. https://doi.org/10.32615/bp.2020.030
.
Song, Y., Jiang, M., Zhang, H., & Li, R. (2021). Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza Sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules, 26(8), 2196. https://doi.org/10.3390/molecules26082196
Kohan-Baghkheirati, E. & Geisler-Lee, J. (2015). Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials, 5(2), 436-467. https://doi.org/10.3390/nano5020436
Lian, J., Zhao, L., Wu, J., Xiong, H., Bao, Y., Zeb, A., Tang, J. & Liu, W. (2020). Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere, 239, 124794. https://doi.org/10.1016/j.chemosphere.2019.124794
Ramzan, M., Ayub, F., Shah, A. A., Naz, G., Shah, A. N., Malik, A., Sardar, R., Telesiński, A., Kalaji, H. M., Dessoky, E. S. & Elgawad, H. A. (2022). Synergistic effect of zinc oxide nanoparticles and Moringa oleifera leaf extract alleviates cadmium toxicity in Linum usitatissimum: Antioxidants and Physiochemical Studies. Frontiers in plant science, 13, 900347. https://doi.org/10.3389/fpls.2022.900347
Nazir, M. M., Noman, M., Ahmed, T., Ali, S., Ulhassan, Z., Zeng, F. & Zhang, G. (2022). Exogenous calcium oxide nanoparticles alleviate cadmium toxicity by reducing Cd uptake and enhancing antioxidative capacity in barley seedlings. Journal of Hazardous Materials, 438, 129498. https://doi.org/10.1016/j.jhazmat.2022.129498
Zou, C., Lu, T., Wang, R., Xu, P., Jing, Y., Wang, R., Xu, J. & Wan, J. (2022). Comparative physiological and metabolomic analyses reveal that Fe3O4 and ZnO nanoparticles alleviate Cd toxicity in tobacco. Journal of Nanobiotechnology, 20(1), 302. https://doi.org/10.1186/s12951-022-01509-3
Hussain, A., Rizwan, M., Ali, Q. & Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental science and pollution research international, 26(8), 7579–7588. https://doi.org/10.1007/s11356-019-04210-5
Ficke, A., Cowger, C., Bergstrom, G. & Brodal, G. (2018). Understanding yield loss and pathogen biology to improve disease anagement: Septoria Nodorum Blotch - A Case study in wheat. Plant Disease, 102(4), 696–707. https://doi.org/10.1094/PDIS-09-17-1375-FE
Ahmad, Z., Tahseen, S., Wasi, A., Ganie, I. B., Shahzad, A., Emamverdian, A., Ramakrishnan, M. & Ding, Y. (2022). Nanotechnological Interventions in Agriculture. Nanomaterials (Basel, Switzerland), 12(15), 2667. https://doi.org/10.3390/nano12152667
Guleria, G., Thakur, S., Shandilya, M., Sharma, S., Thakur, S. & Kalia, S. (2023). Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry: PPB, 194, 533–549. https://doi.org/10.1016/j.plaphy.2022.12.004
Borgatta, J., Ma, C., Hudson-Smith, N., Elmer, W., Plaza Perez, C. D., De La Torre-Roche, R., Zuverza-Mena, N., Haynes, C.L., White, J.C. & Hamers, R. J. (2018). Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6(11), 14847-14856. https://doi.org/10.1021/acssuschemeng.8b03379
Brahmanwade, K., Shende, S., Bonde, S., Gade, A. & Rai, M. (2016). Fungicidal activity of cu nanoparticles against Fusarium causing crop disease. Environ Chem Lett, 14, 229-235. https://doi.org/10.1007/s10311-015-0543-1
Adisa, I. O., Reddy Pullagurala, V. L., Rawat, S., Hernandez-Viezcas, J. A., Dimkpa, C. O., Elmer, W. H., White, J.C., Peralta-Videa, J.R. & Gardea-Torresdey, J. L. (2018). Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 66(24), 5959-5970. https://doi.org/10.1021/acs.jafc.8b01345
Dong, J., Chen, W., Qin, D., Chen, Y., Li, J., Wang, C., Yu, Y., Feng, J. & Du, X. (2021). Cyclodextrin polymer-valved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. Journal of Hazardous Materials, 419, 126404. https://doi.org/10.1016/j.jhazmat.2021.126404
Sreelatha, S., Kumar, N., & Rajani, S. (2022). Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen Xanthomonas campestris pv. campestris. Frontiers in Microbiology, 13, 1085113. https://doi.org/10.3389/fmicb.2022.1085113
Imada, K., Sakai, S., Kajihara, H., Tanaka, S. & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65(4), 551-560. https://doi.org/10.1111/ppa.12443
Wang, H., Qian, C., Jiang, H., Liu, S., Yang, D. & Cui, J. (2023). Visible-Light-Driven Zinc Oxide Quantum Dots for the Management of Bacterial Fruit Blotch Disease and the Improvement of Melon Seedlings Growth. Journal of Agricultural and Food Chemistry, 71(6), 2773–2783. https://doi.org/10.1021/acs.jafc.2c06204
Abdelkhalek, A., El-Gendi, H., Alotibi, F. O., Al-Askar, A. A., Elbeaino, T., Behiry, S. I., Abd-Elsalam, K. A. & Moawad, H. (2022). Ocimum basilicum-Mediated Synthesis of Silver Nanoparticles Induces Innate Immune Responses against Cucumber Mosaic Virus in Squash. Plants (Basel, Switzerland), 11(20), 2707. https://doi.org/10.3390/plants11202707
Rankic, I., Zelinka, R., Ridoskova, A., Gagic, M., Pelcova, P. & Huska, D. (2021). Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor. Scientific Reports, 11(1), 17125. https://doi.org/10.1038/s41598-021-96426-0
Thabet, A. F., Boraei, H. A., Galal, O. A., El-Samahy, M. F., Mousa, K. M., Zhang, Y. Z., Tuda, M., Helmy, E.A., Wen, J. & Nozaki, T. (2021). Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Scientific reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-93518-9
Zheng, Q., Qin, D., Wang, R., Yan, W., Zhao, W., Shen, S., Huang, S., Cheng, D., Zhao, C. & Zhang, Z. (2022). Novel application of biodegradable chitosan in agriculture: Using green nanopesticides to control Solenopsis invicta. International Journal of Biological Macromolecules, 220, 193–203. https://doi.org/10.1016/j.ijbiomac.2022.08.066
Alizadeh, M., Sheikhi-Garjan, A., Ma’mani, L., Hosseini Salekdeh, G. & Bandehagh, A. (2022). Ethology of Sunn-pest oviposition in interaction with deltamethrin loaded on mesoporous silica nanoparticles as a nanopesticide. Chemical and Biological Technologies in Agriculture, 9(1), 1-13. https://doi.org/10.1186/s40538-022-00296-1
Wang, L., Pan, T., Gao, X., An, J., Ning, C., Li, S, & Cai, K. (2022). Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact, 28, 100418. https://doi.org/10.1016/j.impact.2022.100418
Tryfon, P., Kamou, N. N., Ntalli, N., Mourdikoudis, S., Karamanoli, K., Karfaridis, D., Menkissoglu-Spiroudi, U.,& Dendrinou-Samara, C. (2022). Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. NanoImpact, 28, 100430. https://doi.org/10.1016/j.impact.2022.100430
Satti, S. H., Raja, N. I., Ikram, M., Oraby, H. F., Mashwani, Z. U., Mohamed, A. H., Singh, A. & Omar, A. A. (2022). Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis. Molecules (Basel, Switzerland), 27(13), 4274. https://doi.org/10.3390/molecules27134274
Manikandaselvi, S., Sathya, V., Vadivel, V., Sampath, N. & Brindha, P. (2020). Evaluation of bio control potential of AgNPs synthesized from Trichoderma viride. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11(3), 035004. https://doi.org/10.1088/2043-6254/ab9d16
Sahayaraj, K., Madasamy, M. & Radhika, S. A. (2016). Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). Journal of biopesticides, 9(1), 63
Al Shater, H., Moustafa, H. Z. & Yousef, H. (2020). Synthesis, phytochemical screening, and toxicity measuring against Earias insulana (Boisd.) (Lepidoptera: Noctuidae) of silver nano particles from Origanum marjorana extract in the field. Egyptian Academic Journal of Biological Sciences, f.Toxicology & Pest control, 12(1), 175-184. https://doi.org/10.21608/eajbsf.2020.88534
Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021). Nanoparticles induced stress and toxicity in plants. Environmental nanotechnology, monitoring & management, 15, 100457. https://doi.org/10.3390/plants11050692
Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J. R. & Gardea-Torresdey, J. L. (2016). Effects of Silver Nanoparticles on Radish Sprouts: Root Growth Reduction and Modifications in the Nutritional Value. Frontiers in Plant Science, 7, 90. https://doi.org/10.3389/fpls.2016.00090
Wang, L., Sun, J., Lin, L., Fu, Y., Alenius, H., Lindsey, K. & Chen, C. (2020). Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. Ecotoxicology and Environmental Safety, 190, 110072. https://doi.org/10.1016/j.ecoenv.2019.110072
Da Costa, M. V. J. &Sharma, P.K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54, 110–119. https://doi.org/10.1007/s11099-015-0167-5
Hu, J., Wu, X., Wu, F., Chen, W., White, J. C., Yang, Y., Wang, B., Xing, B., Tao, S. & Wang, X. (2020). Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). Journal of Hazardous Materials, 389, 121837. https://doi.org/10.1016/j.jhazmat.2019.121837
García-Ovando, A. E., Piña, J. E. R., Naranjo, E. U. E., Chávez, J. A. C. & Esquivel, K. (2022). Biosynthesized nanoparticles and implications by their use in crops: effects over physiology, action mechanisms, plant stress responses and toxicity. Plant Stress, 10. https://doi.org/10.1016/j.stress.2022.100109
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)