##plugins.themes.bootstrap3.article.main##

Bhabani Devi H P Sarma

Abstract

Globally, the discharge of heavy metals into the water bodies is a matter of serious concern. Heavy metals like cadmium are considered as toxic even at very low concentration. Several conventional methods are available to remove heavy metals from the wastewater. They bear high costs, generate high sludge, and consume high energy. Biosorbents provides many beneficial properties due to their good adsorption capacity for heavy metals. The present work focuses on the potential of waste leaves of Averrhoa carambola (WACLP) as an adsorbent for its ability to remove Cd (II) ions from synthetic water by batch experimental process. The adsorbent was characterized by using elemental analysis, Energy Dispersive X-ray or EDAX and Scanning Electron Micrograph (SEM). The batch experiment was carried out considering various parameters such as pH, initial metal ion concentration, contact time and dose of the adsorbent. The fitting of the experimental data was done by Langmuir, Freundlich and Temkin isothermal models. The study on isothermal models revealed that the experimental parameters were best fitted to the Langmuir isothermal model with R2 value of 0. 976.The Kinetic studies showed pseudo second order depicting chemisorption. The results showed that Averrhoa carambola is a good adsorbent for cadmium and hence it can widen the scope and prospects for future studies on heavy metal removal from the aqueous solution.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Adsorption isotherm, Averrhoa carambola, Cadmium, Conventional, Heavy metals, Kinetics

References
Abbas, M., Harrache, Z. & Trari, M. (2019). Removal of gentian violet in aqueous solution by activated carbon equilibrium, kinetics, and thermodynamic study. Adsorption Science & Technology, 37(7-8), 566-589.
Ahluwalia, S. S. & Goyal, D. (2005). Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in Life Sciences, 5(2), 158-162.
Ajay Kumar, A. V., Darwish, N. A. & Hilal, N. (2009). Study of various parameters in the biosorption of heavy metals on activated sludge. World Applied Sciences Journal, 5(5), 32-40.
Ajmal, M., Rao, R. A. K., Anwar, S., Ahmad, J., & Ahmad, R. (2003). Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater. Bioresource technology, 86(2), 147-149.
Akinyeye, O. J., Ibigbami, T. B., Odeja, O. O. & Sosanolu, O. M. (2020). Evaluation of kinetics and equilibrium studies of biosorption potentials of bamboo stem biomass for removal of Lead (II) and Cadmium (II) ions from aqueous solution. African Journal of Pure and Applied Chemistry, 14(2), 24-41.
Al-Homaidan, A. A., Alabdullatif, J. A., Al-Hazzani, A. A., Al-Ghanayem, A. A., & Alabbad, A. F. (2015). Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences, 22(6), 795-800.
Ali, A. E., Mustafa, A. A., Eledkawy, M. A., Ahmed, A. M., Alnaggar, G. A., Elmelegy, E., & Kolkaila, S. (2022). Removal of Cadmium (II) from Water by Adsorption on Natural Compound. Journal of Environmental Treatment Techniques, 10(2), 164-169
Amen, R., Yaseen, M., Mukhtar, A., Klemeš, J. J., Saqib, S., Ullah, S., & Bokhari, A. (2020). Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob. Cleaner Engineering and Technology, 1, 100006.
Azouaou, N., Sadaoui, Z., & Mokaddem, H. (2008). Removal of cadmium from aqueous solution by adsorption on vegetable wastes. Journal of Applied Sciences, 8(24), 4638-4643.
Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., & Mahvi, A. H. (2015). Heavy metals removal from aqueous environments by electrocoagulation process–a systematic review. Journal of environmental health science and engineering, 13, 1-16.
Bilal, M., Ihsanullah, I., Shah, M. U. H., & Younas, M. (2021). Enhanced removal of cadmium from water using bio-sorbents synthesized from branches and leaves of Capparis decidua and Ziziphus mauritiana. Environmental Technology & Innovation, 24, 101922.
Chakravarty, P., Deka, D. C., Sarma, N. S., & Sarma, H. P. (2012). Removal of copper (II) from wastewater by heartwood powder of Areca catechu: kinetic and equilibrium studies. Desalination and Water Treatment, 40(1-3), 194-203.
Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., ... & Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 211, 235-253.
Edition, F. (2011). Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-8.
Friberg, L., Kjellstrom, T. & Nordberg, G.F. (1986). Cadmium. In: Friberg, L., Nordberg, G.F. & Vouk, V. (eds.) Handbook on the toxicology of metals, 2nd edition, Elsevier Science Publishers, Amsterdam, New York.
Freundlich, H. Over the adsorption in solution (1906) Z. Phys. Chem, 57, 358-471.
Guechi, E., & Benabdesselam, S. (2020). Removal of cadmium and copper from aqueous media by biosorption on cattail (Typha angustifolia) leaves: Kinetic and isotherm studies. Desalin. Water Treat, 173, 367-382.
Gupta, S., Garg, D., & Kumar, A. (2022). Cadmium biosorption using Aloe. barbadensis Miller leaves waste powder treated with sodium bicarbonate. Cleaner Waste Systems, 3, 100032.
Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical engineering journal, 180, 81-90.
Harja, M., Buema, G., Bulgariu, L. et al. Removal of cadmium (II) from aqueous solution by adsorption onto modified algae and ash. Korean J. Chem. Eng. 32, 1804–1811 (2015). https://doi.org/10.1007/s11814-015-0016-z
Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of hazardous materials, 164(1), 161-171.
Krishnan, K. A., & Anirudhan, T. S. (2003). Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water Sa, 29(2), 147-156.
Kumar, P. R., Rao, M. V., Babu, N. C., Kumar, P. V., & Venkateswarlu, P. (2009). Utilization of Erythrina variegata orientalis leaf powder for the removal of cadmium.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
Moresco, H. H., Queiroz, G. S., Pizzolatti, M. G., & Brighente, I. (2012). Chemical constituents and evaluation of the toxic and antioxidant activities of Averrhoa carambola leaves. Revista Brasileira de Farmacognosia, 22, 319-324.
Panda, G. C., Das, S. K., Bandopadhyay, T. S., & Guha, A. K. (2007). Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloids and Surfaces B: Biointerfaces, 57(2), 135-142.
Pandey, P. K., Verma, Y., Choubey, S., Pandey, M., & Chandrasekhar, K. (2008). Biosorptive removal of cadmium from contaminated groundwater and industrial effluents. Bioresource technology, 99(10), 4420-4427.
Patterson, J. W. (1985). Industrial wastewater treatment technology.
Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., & Marhaba, T. F. (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresource technology, 97(18), 2321-2329.
Poon CP. Removal of cadmium from wastewaters. Cadmium in the Environment. 1986:46-55.
Purkayastha, D., Mishra, U., & Biswas, S. (2014). A comprehensive review on Cd (II) removal from aqueous solution. Journal of water process engineering, 2, 105-128.
Rao, K. S., Anand, S., & Venkateswarlu, P. (2010). Adsorption of cadmium (II) ions from aqueous solution by tectona grandis Lf (teak leaves powder). BioResources, 5(1).
Salim, R., Al-Subu, M., & Dawod, E. (2008). Efficiency of removal of cadmium from aqueous solutions by plant leaves and the effects of interaction of combinations of leaves on their removal efficiency. Journal of environmental management, 87(3), 521-532.
See Wan Yan, Rajesh Ramasamy, Noorjahan Banu Mohamed Alitheen & Asmah Rahmat (2013) A Comparative Assessment of Nutritional Composition, Total Phenolic, Total Flavonoid, Antioxidant Capacity, and Antioxidant Vitamins of Two Types of Malaysian Underutilized Fruits (Averrhoa Bilimbi and Averrhoa Carambola), International Journal of Food Properties, 16:6, 1231-1244, DOI: 10.10 80/10942912.2011.582975
Singh, K. K., Rastogi, R., & Hasan, S. H. (2005). Removal of cadmium from wastewater using agricultural waste ‘rice polish’. Journal of hazardous materials, 121(1-3), 51-58.
Singh, K. K., Singh, A. K., & Hasan, S. H. (2006). Low-cost bio-sorbent ‘wheat bran’for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresource technology, 97(8), 994-1001.
Sulaymon, A. H., Mohammed, A. A., & Al-Musawi, T. J. (2013). Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research, 20, 3011-3023.
Tangjuank, S., Insuk, N., Tontrakoon, J., & Udeye, V. (2009). Adsorption of lead (II) and cadmium (II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells. International Journal of Chemical and Molecular Engineering, 3(4), 221-227.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164.
Thakur, R. S., Katoch, S. S., & Modi, A. (2020). Assessment of pine cone derived activated carbon as an adsorbent in defluoridation. SN Applied Sciences, 2(8), 1-12.
Unadkat, K., & Parikh, P. (2019). Localization of Cadmium metal ion in Lemna polyrhiza L. using SEM morphology and EDX analysis. Environment Conservation Journal, 20(1&2), 81-86.
Vimala, R., & Das, N. (2009). Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of hazardous materials, 168(1), 376-382.
Yang, D., Jia, X., & Xie, H. (2019). Heptyl vicianoside and methyl caramboside from sour star fruit. Natural product research, 33(8), 1233-1236.
Yang, D., Xie, H., Jia, X., & Wei, X. (2015). Flavonoid C-glycosides from star fruit and their antioxidant activity. Journal of Functional Foods, 16, 204-210.
Zamani, A. A., Shokri, R., Yaftian, M. R., & Parizanganeh, A. H. (2013). Adsorption of lead, zinc and cadmium ions from contaminated water onto Peganum harmala seeds as biosorbent. International Journal of Environmental Science and Technology, 10, 93-102.
Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1-34. Pandey, P. K., Verma, Y., Choubey, S.,
Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3), 1-55.
Zulfi, A., Melia, I. K., Rahmiana, Z., Hermansyah, A., & Edison, M. (2013). Prediction of Pb (II) and Cu (II) ions biosorption by Annona muricata L. seeds using Artificial Neural Network (ANN) approach. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(4), 1443-1451
Section
Research Articles

How to Cite

Equilibrium isotherm and kinetic study of biosorption of cadmium from synthetic water using wastes leaves of Averrhoa carambola. (2023). Journal of Applied and Natural Science, 15(2), 826-843. https://doi.org/10.31018/jans.v15i2.4598