##plugins.themes.bootstrap3.article.main##

Gajendra N. Bhangale Babasaheb W. Narladkar

Abstract

Rhipicephalus microplus is an important tick infesting livestock, particularly ruminants, and also transmits various economic diseases, viz. babesiosis and anaplasmosis. Considering the economic impact of those diseases and losses incurred due to tick infestations, it is pertinent to appraise the distribution of these tick species regarding climatic backgrounds. The present study aimed to employ a species distribution model for studying distribution patterns of Rhipicepaus microplus in India. Important bioclimatic variables viz Bio1 (Annual Mean temperature), Bio2 (Mean diurnal range of temperature), Bio12 (Annual precipitation) and Bio15 (Precipitation seasonality) were used for building a model with the help of ‘dismo’ R package. The results showed that temperature and precipitation significantly impact the distribution pattern of R. microplus. The resultant model indicated that bio 1, i.e. annual mean temperature, has significantly highest influence (0.0212 ± 0.0017; p<0.00001) on the occurrence of these ticks than the effects of bio12 (0.0007±0.0001; p<0.0001) and bio15 (-0.0153±0.0031; p<0.0001); however effects of bio2 (-0.0033±0.0042; p=0.427) was non-significant on its occurrence. The accuracy of this model is adjudged well by its AUC value being 0.874. On visual interpretation of the model maps, it was found that the drier regions comprising parts of Rajasthan, Gujarat and Madhya Pradesh of the country have low suitability as against those with sufficient precipitation. The temperature effects on the survivability of ticks and eggs are linked with the soil types of the country's various regions. The present study is the first attempt to present a distribution model of an important vector of livestock diseases.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Distribution pattern, Ecological niche model, Generalized linear model, Rhipicephalus microplus, Ruminant tick

References
Asmaa, N.M., ElBably, M.A. & Shokier, K.A. (2014). Studies on prevalence, risk indicators and control options for tick infestation in ruminants, B.J.B.A.S., 3 (1), 68-73, https://doi.org/10.1016/j.bjbas.2014.02.009
Benedict, B.M. & Barboza, P.S. (2022). Adverse effects of Diptera flies on northern ungulates: Rangifer, Alces, and Bison. Mam. Rev., 52, 425-437. https://doi.org/1 0.1111/mam.12287
Booth, T.F. (1992). Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus. Exp. Appl. Acarol., 14, 137–149 https://doi.org/10.1007/BF01219106
Burtis, J.C., Sullivan, P., Levi, T. et al. (2016). The impact of temperature and precipitation on blacklegged tick activity and Lyme disease incidence in endemic and emerging regions. Parasit. Vectors, 9, 606. https://doi.org/10.1186/s13071-016-1894-6
Camaclang, A.E., Maron, M., Martin, T.G. & Possingham, H.P. (2015). Current practices in the identification of critical habitat for threatened species. Conserv. Biol. 29, 482–492.
Carpenter, S., Veronesi, E., Mullens, B. & Venter, G. (2015). Vector competence of Culicoides for arboviruses: three major periods of research, their influence on current studies and future directions. Rev. Sci. Tech., 34, 97–112.
Carvalho, B., Rangel, E., & Vale, M. (2017). Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bull. Entom. Res., 107(4), 419-430. https://doi.org/10.1017/S0007485316001097
D'Alessandro, W.B., Rodrigues, J., Fernandes, E.K. & Luz, C. (2014). Impact of humidity on clustered tick eggs. Parasitol. Res., 113(10), 3899-3902. https://doi.org/10.1007/s00436-014-4128-x.
da Silva, N.B., Taus, N.S., Johnson, W.C., Mira, A., Schnittger, L., Valente, J.D.M., Vidotto, O., Masterson, H.E., Vieira, T.S.W.J., Ueti, M.W. & Vieira, R.F.C. (2018). First report of Anaplasma marginale infection in goats, Brazil. PLoS One 13, e0202140
De Clercq, E.M., Vanwambeke, S.O., Sungirai, M., Adehan, S., Lokossou, R. & Madder, M. (2012). Geographic distribution of the invasive cattle ticks Rhipicephalus microplus, a country-wide survey in Benin. Exp. Appl. Acarol., 58, 441–452
Estrada-Peña, A., García, Z., & Sánchez, H.F. (2006). The distribution and ecological preferences of Boophilus microplus (Acari: Ixodidae) in Mexico. Exp. Appl. Acarol., 38: 307– 316.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27 (8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010.
Ghosh, S. & Nagar, G. (2014). Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: a review. J. Vector Borne Dis., 51(4), 259-270
Giles, J.R., Peterson, A.T., Busch, J.D., Olafson, P.U., Scoles, G.A., Davey, R.B., Pound, J.M., Kammlah, D.M., Lohmeyer, K.H. & Wagner, D.M. (2014). Invasive potential of cattle fever ticks in the southern United States. Parasit Vectors, 7, 189. https://doi.org/10.1186%2F1756-3305-7-189
Greenfield, B.P.J. (2011). Environmental parameters affecting tick (Ixodes ricinus) distribution during the summer season in Richmond Park, London. Biosci. Horiz., 4(2), 140–148, https://doi.org/10.1093/biohorizons/hzr016
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2015). Dismo: Species Distribution Modeling. R Package Version 1.0-12. http://CRAN.R-project.org/package=dismo
Jaenson, T.G.T., & Lindgren, E. (2010). The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick Borne Dis., 2, 44–49. https://doi.org/10.1016/j.ttbdis.2010.10.006
Khaskheli, A.A. (2020). Remedial Strategies against an Emerging Threat of Ticks in Goats: A Review. A.J.B.S.R., 10(3), 001517. https://doi.org/10.34297/AJBSR.2020.10.0 01517
Kopsco, H.L., Smith, R.L. & Halsey, S.J. (2022). A Scoping Review of Species Distribution Modeling Methods for Tick Vectors. Front. Ecol. Evol. 10, 893016. https://doi.org/10.3389/fevo.2022.893016
Kumar, J., Manzer, H., Punia, V. & Godwal, P.K. (2022). Prevalence of cattle tick infestation in three villages of Vallabhnagar tehsil of Udaipur district (Rajasthan). The Pharma Innovation Journal, SP-11(3), 376-380.
Kumar, R., Sharma, A.K. & Ghosh, S. (2020). Menace of acaricide resistance in cattle tick, Rhipicephalus microplus in India: Status and possible mitigation strategies. Vet. Parasitol., 278, 108993. https://doi.org/10.1016/j.vetpar.20 19.108993
Lyanen, G., Zeman, P., Bakuname, C. et al. (2008). Shifts in the distributional ranges of Boophilus ticks in Tanzania: evidence that a parapatric boundary between Boophilus microplus and B. decoloratus follows climate gradients. Exp. Appl. Acarol., 44, 147–164
Marques. R., Krüger, R.F., Peterson, A.T., de Melo, L.F., Vicenzi, N. & Jiménez-García, D. (2020). Climate change implications for the distribution of the babesiosis and anaplasmosis tick vector, Rhipicephalus (Boophilus) microplus. Vet. Res., 51(1), 81. https://doi.org/10.1186/s13567-020-00802-z
Mondal, D.B., Sarma, K. & Saravanan M. (2013). Upcoming of the integrated tick control program of ruminants with special emphasis on livestock farming system in India. Ticks Tick Borne Dis., 4(1–2), 1-10, https://doi.org/10.1016/j.ttbdis.2012.05.006
Narladkar, B.W. (2018). Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World, 11(2), 151-160. https://doi.org/10.14202/vetworld.2018.1 51-160.  
Ogden, N.H. & Lindsay, L.R. (2016). Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasitol. 32(8), 646-656, https://doi.org/10.1016/j.pt.2016.04.015.
Okely, M., Al-Khalaf, A.A. (2022). Predicting the potential distribution of the cattle fever tick Rhipicephalus annulatus (Acari: Ixodidae) using ecological niche modeling. Parasitol. Res.,121(12), 3467-3476. https://doi.org/10.1007/s00436-022-07670-w.
Okely, M., Chen, Z., Anan, R. & Gad-Allah, S. (2022). Updated checklist of the hard ticks (Acari: Ixodidae) of Egypt, with notes of livestock host and tick-borne pathogens. Syst. Appl. Acarol., 27 (5), 811–838. https://doi.org/10.11158/saa.27.5.1
Palraj, R. (2022). Chapter 15 - Vector-Borne Infections, Editor(s): Zelalem Temesgen, A Rational Approach to Clinical Infectious Diseases, Elsevier, 2022, Pages 200-219, ISBN 9780323695787, https://doi.org/10.1016/B978-0-323-69578-7.00015-6.
Patel, D.C., Solanki, J.B. & Kumar, N. (2019). Risk factors associated prevalence of hard tick in large ruminants of coastal areas of South Gujarat, India. Indian J. Anim. Res., 53(11), 1514-1517
Paules, C.I., Marston, H.D., Bloom, M.E. & Fauci, A.S. (2018). Tickborne diseases—Confronting a growing threat. N. Engl. J. Med., 379, 701–703.
Perennes, M., Diekötter, T., Hoffmann, H., Martin, E.A., Schröder, B. & Burkhard, B. (2023). Modelling potential natural pest control ecosystem services provided by arthropods in agricultural landscapes. Agric. Ecosyst. Environ., 342, 108250. https://doi.org/10.1016/j.agee.2022.10 8250.
Pound, J.M., George, J.E., Kammlah, D.M., Lohmeyer, K.H. & Davey, R.B. (2010). Evidence for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations along the Texas/Mexico border in South Texas: a review and update. J. Econ. Entomol., 103, 211–218
Rehman, A., Nijhof, A.M., Sauter-Louis, C. et al. (2017). Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan. Parasit. Vectors, 10, 190. https://doi.org/10.1186/s13071-017-2138-0
Santiago, N., Ignacio, J. G., Nicolas M., Alberto A. G., Estrada-Peña, A. (2022). Assessment of habitat suitability for the cattle tick Rhipicephalus (Boophilus) microplus in temperate areas. Res. Vet. Sci., 150, 10-21. https://doi.org/10.1016/j.rvsc.2022.04.020.
Scott, J. & Jens-Christian, S. (2018). Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 22, 373(1761), 20170446. http://doi.org/10.1098/rstb.2017.0446
Singh, K., Kumar, S., Sharma, A.K., Jacob, S.S., RamVerma M., Singh, N.K., Shakya, M., Sankar, M. & Ghosh, S. (2022). Economic impact of predominant ticks and tick-borne diseases on Indian dairy production systems. Exp. Parasitol., 243, 108408. https://doi.org/10.1016/j.exppara. 2022.108408.
Smith, K.V., DeLong, K.L., Boyer, C.N., Thompson, J.M., Lenhart. S.M., Strickland, W.C., Burgess, E.R., Tian, Y., Talley, J., Machtinger, E.T., & Trout, R.T. (2022). A Call for the Development of a Sustainable Pest Management Program for the Economically Important Pest Flies of Livestock: a Beef Cattle Perspective, J. Integr. Pest Manag., 13, 1, https://doi.org/10.1093/jipm/pmac010
Sofaer, H.R., Jarnevich, C.S., Pearse, I.S., Smyth, R.L., Auer, S., Cook, G.L., Edwards, T.C., Guala, G.F. Jr,, Howard, T.G., Morisette, J.T. & Hamilton, H. (2019). Development and Delivery of Species Distribution Models to Inform Decision-Making, BioScience, 69 (7), 544–557, https://doi.org/10.1093/biosci/biz045
Spickler, A.R. (2022). Rhipicephalus (Boophilus) microplus. Retrieved from http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php.
Sungirai, M., Moyo, D.Z., De Clercq, P., Madder, M., Vanwambeke, S.O. & De Clercq E.M. (2018). Modelling the distribution of Rhipicephalus microplus and R. decoloratus in Zimbabwe. Vet. Parasitol.: Reg. Stud. Rep., 14, 41-49, https://doi.org/10.1016/j.vprsr.2018.08.006
Sutherst, R. W. & Bourne, A.S. (2006). The effect of desiccation and low temperature on the viability of eggs and emerging larvae of the tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodidae). Int. J. Parasitol. 36, 193-200.
Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285–1293.
Tabor, A.E., Ali, A., Rehman, G., Rocha Garcia, G., Zangirolamo, A.F., Malardo, T. & Jonsson, N.N. (2017). Cattle tick Rhipicephalus microplus-host interface: A review of resistant and susceptible host responses. Front. Cell Infect. Microbiol., 7, 506
Tan, L.P., Hamdan, R.H., Hassan, B.N.H., Reduan, M.F.H., Okene, I.A.-A., Loong, S.K., Khoo, J.J., Samsuddin, A.S. & Lee, S.H. (2021). Rhipicephalus Tick: A Contextual Review for Southeast Asia. Pathogens 10, 821. https://doi.org/10.3390/pathogens10070821
Tokarevich, N. K., Tronin, A. A., Blinova, O. V., Buzinov, R. V., Boltenkov, V. P., Yurasova, E. D., et al. (2011). The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Glob. Health Action, 4, 8448. https://doi.org/10.3402/gha.v4i0.8448
Section
Research Articles

How to Cite

Study of distribution of Rhipicephalus microplus ticks in India based on Worldclim temperature and rainfall data through an ecological niche modeling approach. (2023). Journal of Applied and Natural Science, 15(2), 777-782. https://doi.org/10.31018/jans.v15i2.4561