Study of the physico-chemical and bacteriological quality of water intended for consumption in the town of Gagal, southwestern Chad
Article Main
Abstract
The city of Gagal suffers from insufficient drinking water, and the population turns to surface water, wells and drillings without guarantee of quality. In order to characterize the hydrogeochemical and bacteriological properties of the waters of the aquifer system in the city of Gagal, to contribute to improving its knowledge, field campaigns were undertaken to sample the groundwater.The present study focuses on the hydrogeochemical and bacteriological characterization of drinking water in Gagal, southwestern Chad. The methodology consisted of acquiring existing data, a field campaign, and a chemical and bacteriological analysis of the water in the laboratory. The results of the physicochemical analyses revealed that the values of the parameters such as conductivity, pH (5.23), Ca²⁺ (26.11 mg/L), Mg²⁺(5.14 mg/L), Na⁺(3.54 mg/L), K⁺(1.34 mg/L), HCO3-(81.74 mg/L), Cl-(11.77 mg/L), SO4-(1.94 mg/L), and NO3- (8.70 mg/L) conformed to the WHO potability standards. Piper's diagram showed calcic and magnesian bicarbonate facies represented by 75%; and calcic and magnesian sulfate chloride facies in 25% of the analyzed waters. The bacteriological (Total coliforms (0 to more than 135,200 CFU/100 ml), Escherichia coli (0 and 14,400 CFU/100 ml), faecal enterococci (0 and 4600 CFU/100 ml)) study confirmed that the water from the wells and boreholes showed pollution of bacterial origin. Using these waters may endanger the populations with the risks of hydric diseases.
Article Details
Article Details
Groundwater, Physico-chemical characterization, Hydrogeochemistry, bacteriology, Mayo-Kebbi, Chad
Adeyeye, S. A. O., Ashaolu, T. J., Bolaji, O. T., Abegunde, T. A. & Omoyajowo, A. O. (2023). Africa and the Nexus of poverty, malnutrition and diseases. Critical Reviews in Food Science and Nutrition, 63(5), 641-656.
Angelakis, A. N., Capodaglio, A. G., Passchier, C. W., Valipour, M., Krasilnikoff, J., Tzanakakis, V. A., ... & Dercas, N. (2023). Sustainability of Water, Sanitation, and Hygiene: From Prehistoric Times to the Present Times and the Future. Water, 15(8), 1614.
Baron, C. (2006) : Mutations institutionnelles et recompositions des territoires urbains en Afrique : une analyse à travers la problématique de l’accès à l’eau. Développement durable et territoires [Online], Dossier 6 | 2006, Online since 01 September 2006, connection on 30 August 2016. URL: http://developpementdurable.revues.org/2940; DOI: 10.4000/developpementdurable.2940
Bouchez C., Deschamps P., Goncalves J., Hamelin B., Mahamat Nour A., Vallet-Coulomb C. & Sylvestre F. (2019) Water transit time and active recharge in the Sahel inferred by bomb- produced 36 Cl. Sci. Rep. 9(1), 7465. https://www.nature.com/articles/s41598-019- 43514-
Edmunds, W.M., Cook, J.M., Darling, W.G., Kinniburgh, D.G., Miles, D.L., Bath, A.H., Morgan-Jones, M., Andrews, J.N. (1987). Baseline geochemical conditions in the Chalk aquifer, Berkshire, UK: a basis for groundwater quality management. 2, 251–274.
Fehdi Ch, Aek Rouabhia, and Boudoukha A (2009): The hydrogeochemical characterization of Morsott-El Aouinet aqui- fer, Northeastern Algeria. Environ Geol 58(7):1611–1620.
Gleick, P. H. (1996). Basic water requirements for human activities. Meeting basic needs. Water International, 21 (2), 83-92.
Dos Santos, S., Adams, E.A., Neville, G., Wada, Y., de Sherbinin, A., Mullin Bernhardt, E. & Adamo, S.B.(2017). Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Science of The Total Environment 607–608, 497–508. https://doi.org/10.1016/j.scitotenv.2017.06.157
Haig, S. J., Kotlarz, N., Kalikin, L.M., Chen, T., Guikema, S., LiPuma, J.J. & Raskin, L. (2020). Emerging investigator series: bacterial opportunistic pathogen gene markers in municipal drinking water are associated with distribution system and household plumbing characteristics. Environmental Science: Water Research & Technology 6, 3032–3043.
Magande, t., Chigudu, A., PMabvundwi, M. I. R. A. C. L. E., & Hickonicko, B. (2023). The Smart City Concept in Africa: Case of Zimbabwe. Managing editor.
Mallongi, A., Herlianti, H. A., Pulubuhu, D. A. T., Arsyad, M., Jastam, M. S., & Rachmat, M. (2019). Calculation of Potential Risks Assessment of Escherichia coli and Total Coliform in Communities Well Water of Puty Village, Luwu Regency. Indian Journal of Public Health Research and Development, 10(10).
Mahamat Nour A., (2013). Caractérisation et fonctionnement du système aquifère de Haraz Al Biar (Nord Chari Baguirmi). Mémoire de Master. Université de Ngaoundéré, 83p.
Mahamat Nour, A., Vallet-Coulomb, C., Bouchez, C., Ginot, P., Doumnang, J.C., Sylvestre, F. & Deschamps, P. (2019). Geochemistry of the Lake Chad Tributaries Under Strongly Varying Hydro-climatic Conditions. Aquat Geochem 26, 3–29. https://doi.org/10.1007/s10498-019-09363-w
MEEP. (2018). Rapport du ministère de l’environnement de l’eau et de la peche du Tchad sur le plan d’investissement national ; Ministère de l’eau et assainissement au Tchad, 152p
Ngounou Ngatcha B. (1993). Hydrogéologie d’aquifères complexes en zone semi- aride. Les aquifères Quaternaire du grand Yaéré (Nord Cameroun). Thèse de doctorat. Université de Grenoble I, 330p.
Ousmane B. (1998). Etude géochimique et isotopique des aquifères de socle de la bande sahélienne (Liptako, Sud Maradi, Zinder Est). Thèse Univ. Niamey, 175p.
Pias J. (1970). Les formations sédimentaires Tertiaire et Quaternaire de la cuvette Tchadienne et les sols qui en dérivent, Document de L’O.RS.T.O.M, 425p.
Quaye, I., Amponsah, O., Azunre, G. A., Takyi, S. A., & Braimah, I. (2022). A review of experimental informal urbanism initiatives and their implications for sub-Saharan Africa's sustainable cities’ agenda. Sustainable Cities and Society, 103938.
Ramakrishnaiah, C.R., Sadashivaiah, C. & Ranganna, G. (2009). Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of chemistry 6, 523–530.
Schneider J. L. (1968). Notice explicative. Carte hydrogéologique de reconnaissance de la République du Tchad au 1/500 000 Feuille Pays Bas-Largeau. BRGM, Brazzaville, 35p.
Schneider J.L & Wolff J.P. (1992). Carte géologique et Carte hydrogéologique au 1/1 500 000 de la République du Tchad. Mémoire explicatif. Document BRGM N°209, vol.1-2, 689 p.
Şahin Kiy, M., & Arslan, H. (2021). Assessment of groundwater quality for irrigation and drinking using different quality indices and geostatistical methods in Çorum province (Turkey). Irrigation and Drainage, 70(4), 871-886.
Şener, Ş., Şener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584, 131-144.
SUEZ (2016). Plan d’Investissement Régional, eau et assainissement 2015-2030 / Mayo-Kebbi Ouest, p110.
Suzanne (2008). Ressources en eau souterraine du centre urbain d'Ouagadougou au Burkina Faso, qualité et vulnérabilité. Thèse de doctorat, Université d’Avignon et des Pays de Vaucluse. 245p.
Torrent H. (1965). Feuille Moundou. Notice explicative, rapport de synthèse BRGM, 64p.
Unicef (2017). https://www.unicef.org/fr/communiqu%C3%A9s-de-presse/21-milliards-de-personnes-n%E2%80%99ont-pas-acc%C3%A8s-%C3%A0-l%E2%80%99eau-potable-salubre-%C3%A0-leur
Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., ... & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171, 595-609.
Verma, P., Singh, P. K., Sinha, R. R., & Tiwari, A. K. (2020). Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: a case study of the Bokaro district, India. Applied Water Science, 10, 1-16.
WHO (2007). Evaluation of certain food additives and contaminants: sixty-eighth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.
Yang, N., Wang, G., Shi, Z., Zhao, D., Jiang, W., Guo, L., Liao, F.& Zhou, P. (2018). Application of Multiple Approaches to Investigate the Hydrochemistry Evolution of Groundwater in an Arid Region: Nomhon, Northwestern China, Water 10, 1667. https://doi.org/10.3390/w10111667
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)