Thiruppathi Jayaraman Vani Chandrapragasam Kavitha Subbiah


Dengue fever is a life-threatening illness in humans caused by the dengue virus belonging to Flaviviridae, affecting mainly in tropical and subtropical countries. The spread of this disease is through the dengue vector Aedes aegypti. Development of biodegradable, environmentally safe, low-cost larvicides is essential to overcome the resurgence effects of chemical insecticides. The present study included the development of bioformulations from larvicidal polar solvent extracts of the plant leaves. The solvents used for the extractions were ethyl acetate for Aloe vera (A), ethanol for Carica papaya (B), and methanol for Parthenium hysterophorous (C). Bioformulations in different combinations like A, B, C, A+B, B+C, C+A, and A+B+C with the concentrations of 50ppm, 100ppm, 150ppm, 200ppm, 250ppm and 300ppm were tested against the IVth instar larvae of Aedes aegypti and the results were recorded for every 24h 48h and 72h . The bioformulation  extracts B+C (300ppm) showed 90 percent mortality of larvae after 72 h of treatment. It was concluded that the larvae's mortality was caused by the presence of bioactive compounds of B+C extracts. This formulation can be considered an effective biopesticide for the dengue vector Ae. aegypti IVth instar larvae.




Aedes aegypti, Aloe vera, Carica papaya, Dengue, Parthenium hysterophorous

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.
Ali, M.Y.S., Kumar, S.R. & Beula, J.M. (2013). Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pacific Journal of Tropical Disease, 3, 196-201. https://doi.org/10.1016/S2222-1808(13)60040-7.
Anitha, R. & Geethapriya, D. (2012). Larvicidal activity of plant extracts on Aedes aegypti L. Asian Pacific Journal Tropical Biomedicine, 2(3), S1578-S1582. https://doi.org/10.1016/S2221-1691(12)60456-0.
Bouabida, H. & Djemaa, D. (2022). Phytochemical constituents and larvicidal activity of Ruta graveolens, Ruta montana and Artemisia absinthium hydro-methanolic extract against mosquito vectors of avian plasmodium (Culiseta longiareolata). South African Journal of botany, 2, 41-44. https://doi.org/10.1016/j.sajb.2022.05.017
Chakkaravarthy, V. M., Ambrose, T., Vincent, S., Arunachalam. R., Paulraj. M. G., Ignacimuthu S. & Annadurai. G. (2011). Bioefficacy of Azadirachtaindica (A. Juss) and Datura metal (Linn.) leaves extracts in controlling Culex quinquefasciatus (Dipteral: Culicidae). Journal of Entomology, 8(2), 191-197. https://doi.org/10.3923/je.2011.191.197.
Copping, L. G. & Menn, J. J. (2000). Review Biopesticides: a review of their action, applications and efficacy. Pest Management Science, 56(8), 651-676. https://doi.org/10.1002/1526-4998.
Destrianto, P. D., Wardani, D. P. K., Hikmawati, I., Mujahid, I. (2023). Why is Nicotiana tabacum leaf extract more effective than Piper betle leaf extract on mortality of Aedes aegypty larvae ?. Experimental parasitology. 247(4), 108479. https://doi.org/10.1016/j.exppara.2023.108479.
Gratz, N. G. & Halstead, S. B. (2008). Dengue. Tropical Medicine: Science and Practice. Imperial College Press, London, 5, 361-387. https://doi.org/10.1142/p570.
Guedes, E. A. C., Carvalho, C. M. D., Lisboa Ribeiro Junior, K. A., Lisboa Ribeiro, T. F., de Barros. L. D., de Lima, M. R. F., Moura. P., de Barros. F. & Goulart Sant’Ana. A.E. (2014). Larvicidal activity against Aedes aegypti and molluscicidal activity against Biomphalaria glabrata of Brazilian marine algae. Journal of Parasitology Research, 3, 1-6. https://doi.org/10.1155/2014/501328.
Igimoh, I., Uduozemhe, M., Osarobo, O A. (2022). Comparative studies on larvicidal efficacy of ethanolic extracts of Carica papaya leaf and Leaf stalk against Aedes aegypti. Nigerian Annals of pure and Applied Sciences. 5(1). 164-170. https://doi.org/10.5281/zenodo.6905292.
Jafari, S., Abolfazl, P.M. & Ali, S. (2021). In vitro antibacterial activity of ethanolic extract of aloe vera and silver nanoparticles on standard strains of some pathogenic bacteria. Journal of Clinical Basic Research, 5(4), 22-30.
Jaiswal, Jyotsna., Singh, N. & Gupta, V.K. (2022a). Pharmacological chemistry and biomedical implications of chemical ingredients from Parthenium hysterophorus. Current topics in Medical Chemistry, 22(23), 1950- 1965. https://doi.org/10.2174/1568026622666220307145027.
Jaiswal, J., Doharey, P. K., Singh, R., Tiwari, P., Singh, N., Kumar, A., Gupta, V. K., Siddiqui, A. J. & Sharma B. (2022b). Biochemical Characterization of Different Chemical Components of Parthenium hysterophorus and Their Therapeutic Potential against HIV-1 RT and Microbial Growth. Hindawi BioMed Research International, 1(2): 1-21. https://doi.org/10.1155/2022/3892352.
Kumar, Sarita., Naim, Wahab. & Mishra, M. (2012). Evaluation of 15 local plant species as Larvicidal agents against an Indian strain of dengue fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Frontiers in Physiology, 104 (3), 1-6. https://doi.org/10.3389/fphys.2012.00104.
Lalithambika, B. & Vani, C. (2016). Pseudomonas aeruginosa KUN2, extracellular toxins-A potential source for the control of dengue vector. Journal of Vector Borne Diseases, 53(2), 105-111.
Lalithambika, B., Chandrapragasam, V. , Mathew J. & Dey, P. (2023). 2-(dec-2-enyl)-3-methyl quinolin-4-ol-C20H27NO and 7-amino-N-methyl phenazine-1-carboxamide- C14 H13 N4O2: potent bio-active compounds against dengue vector Aedes aegypti. International Journal of Tropical Insect Science. http://doi.org/10.1007/s42690-023-00976-x.
Leandro, C.S., Azevedo, F. R., Candido & Alencar, C.H. (2023). Phytochemical prospection and larvicidal bioactity of the janaguba (Himatanthus drasticus) Mart. Plumel (Apocynaceae) latex against Aedes aegypti L. (Diptera: Culicide). Brazilian Journal of Biology. 5(1), 1-10. https://doi.org/10.1590/1519-6984.270143.
Lotfizadeh, V., Mollaei, S. & Hazrati, S. (2022). Biological activities of Alonin – rich extracts from Aloe vera (L.). Journal of medicinal plants and by products. 2(9): 24-36. https://doi.org/ 10.22092/JMPB.2021.355897.1395.
Mohsin, A & Bhandari, K. (2022). Molecular docking studies to find a natural inhibitor against dengue. AIP Conference Proceedings, 2424(1), 060006. https://doi.org/10.1063/5.0076932.
Okafo, S. E., Akpo, C.o. & Okafor, C. C. (2020). Evaluation of herbal creams formulated using ethanolic extract of carica papaya leaves. Nigerian Journal of Surgical Sciences 18(1), 50-56. https://doi.org/10.31032/IJBPAS/202 2/11.5.5942.
Padmanabhan, V., Prabakaran, G., Paily, K. P. & Balaraman. K. (2005). Toxicity of a mosquitocidal metabolite of Pseudomonas fluorescens on larvae and pupae of the house fly, Musca domestica. Indian Council of Medical Research, 121(2), 116-119.
Postelnicu, T. (2014). Probit analysis. International Encycopedia od Statistical Science. 1128-1131.
Priya, S.E., Srinivasan, P.V., Altemini A.B., Keerthana R., Radhakrishnan N., Nathan S.S. Kalaivani, K., Chandrasekar, N., Karthi, S. Ganesan, R. Alkanan, Z. T., Pal, T., Verma, O.P. & Prockow J. (2023). Bioactive molecules derived from plants in managing Dengue vector Aedes aegypti (Linn,). Molecules. 28 (1), 2-28. https://doi.org/10.3390/molecules28052386.
Pujiastuti, E. & Andreana, D. (2022). Determination of total flavonoid content of a peel ethyl acetate extract of Carica papaya L. Menara Journal of Health Science, 1(2): 58-71. https://jurnal.iakmikudus.org/article/view/7.
Riaz N. (2023). Effect of different plants extract on Acetylcholinesterase activity of Aedes aegypti and Musca Domestica adults. Pakistan Journal of Science. 3(1), 11-19. https://doi.org/10.57041/pjs.v74i1.805.
Endra, P. & Andreana, D. (2022). Determination of total flavonoid content of a peel ethyl acetate extract of Carica papaya L. Journal of Health Sciences, 1(2), 58–71.
Rezza, G. (2012). Aedes albopictus and the reemergence of dengue. BMC Public Health, 12(1), 72. https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-72.
Samuel, P. R., Pathalam G., Babu V., Kamaraj R., Subramaian M., Antony S., Sanmugapriya K., Pal aniswamy S. and Savarimuthu I. (2023). Biocontrol efficacy of apigenin isolated from Anisomeles indica (L.) Kuntze against immature stages of Culex quinquefasciatus (Say, 1823) and its in silico studies. Biocatalyst and Agricultural Biotechnology, 48(1), 102637. https://doi.org/10.1016/j.bcab.2023.102637
Sharawi, E.S. (2023). Toxuc effect of some traditional herbes in the Kingdome of Saudi Arabia against Aedes aegypti larvae as a safety method for control. International Journal of Mosquito Research, 10(1), 15-20. https://doi.org/10.22271/23487941.2023.v10.i1a.657.
Soares, L.B.F., Junior, E.F.S. & Moreira, K.A. (2022). Natural products for controlling dengue and its vectors. Studies in Natural Products Chemistry, 72, 423- 464. https://doi.org/10.1016/B978-0-12-823944-5.00011-9.
Subramaniam, J., Kovendan, K., Kumar P.M. & Walton, W. (2012). Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus spharicus, against Chikungunya vector Aedes aegypti. Saudi Journal of Biological Sciences, 19(4), 503-509. https://doi.org/10.1016/j.sjbs.2012.07.003.
Teh, B.P., Ahmad, N.B. & Mohamad, S.B. (2022). Carica papaya leaf juice for dengue: A Scoping Review. Nutrients, 14(8). 1584. https://doi.org/10.3390/nu14081584.
World Health Organization. (2023). Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
Research Articles

How to Cite

Development of bioformulations using plant extracts for the control of dengue vector, Aedes aegypti. (2023). Journal of Applied and Natural Science, 15(2), 760-766. https://doi.org/10.31018/jans.v15i2.4518