Antifungal synergic activity of essential olive oil and alcoholic turmeric extracts against isolates from the dried grapes raisins
Article Main
Abstract
Fungi are responsible for a wide variety of harm to humans, including food spoilage and infections. Using chemicals to restrict fungal development or infections has negative repercussions, such as human health dangers from the chemical applications and rising antifungal-drug resistance, so this study aimed to use medicinal plants and their extracts as an alternative method to restrict fungal growth. Ten isolates of the genus Aspergillus were identified from the fruits of dried grapes (raisins) of all kinds (Iraqi black raisins, Iranian yellow raisins, and brown raisins) at the species level using three – differential media: Czapek Yeast Extract Agar( CYA), Malt Extract Agar( MEA), and 25% Glycerol nitrate agar (G25N) incubated in 5, 25 and 37 ºC. Aspergillus niger was the most common isolated species. The number of A. niger isolates reached seven from all types of dried grapes, while A. flavus recorded three isolates from black raisins and brown raisins. Aspergillus Flavus Parasiticus Agar (AFPA) was used to detect the ability of A. flavus isolates to produce aflatoxin at 25-30 ºC for one week. Alcoholic extract of turmeric showed a significant inhibitory effect on the colony diameter of both A. flavus and A. niger isolated from the fruit of Iraqi black raisins with an inhibition rate of 86.6% and 68.8 %, respectively, at 4 mg/ ml concentration. The mixture of turmeric and essential olive oil gave a distinct inhibitory effect, reaching a 100% inhibition rate from the lowest to highest concentration for both A. niger and A. flavus .
Article Details
Article Details
Aspergillus, Essential olive oil, Raisins, Turmeric
Abubakar , A.R. & Haque , M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes . J Pharm Bioallied Sci., 1– 10 . doi: 10.4103/jpbs.JPBS_175_19.
Agarwal, V.K. & Sinclair, J.B. 1997. Principles of Seed Pathology, 2. ed. Boca Raton: CRC, 538p . doi https://doi.org/10.1201/9781482275650
Al-Otibi, F. ; Moria, G. A., Alharbi, R.I., Yassin, M.Y. & Al-Askar , A.A. ( 2023) . The Antifungal Properties of Tamarix aphylla Extract against Some Plant Pathogenic Fungi . Microorganisms 11, 127. https://doi.org/10.3390/microorganisms11010127 .
Al- Nauman, A.Y. & Sharif H. 1998, Molecular effect for some plant extracts on growth and Metabolism of some positive and negative germs for Gram pigment, Ph.D. Dissertation, college of science, Mosul University, Iraq .
Asnaashari, S., Dastmalchi, S., & Javadzadeh, Y. (2018). Gastroprotective effects of herbal medicines (roots). International Journal of Food Properties, 21(1), 902-920. DOI: 10.1080/10942912.2018.1473876.
Coronado-Castellote, L., & Jiménez-Soriano, Y. (2013). Clinical and microbiological diagnosis of oral candidiasis. Journal of clinical and experimental dentistry, 5(5), e279. doi: 10.4317/jced.51242
Chang, Y., Harmon, P. F., Treadwell, D. D., Carrillo, D., Sarkhosh, A., & Brecht, J. K. (2022). Biocontrol potential of essential oils in organic horticulture systems: From farm to fork. Frontiers in Nutrition, 8, 1275. doi: 10.3389/fnut.2021.805138.
Chebil, S., Rjiba-Bahri, W., Oueslati, S., Ben Ismail, H., Ben-Amar, A., & Natskoulis, P. (2020). Ochratoxigenic fungi and Ochratoxin A determination in dried grapes marketed in Tunisia. Annals of Microbiology, 70, 1-9. https://doi.org/10.1186/s13213-020-01584-7.
Chen, C., Long, L., Zhang, F., Chen, Q., Chen, C., Yu, X., ... & Long, Z. (2018). Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PloS one, 13(3), e0194284. doi: 10.1371/journal.pone.0194284
Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58. doi:10.3390/medicines4030058.
Dovigo, L. N., Carmello, J. C., de Souza Costa, C. A., Vergani, C. E., Brunetti, I. L., Bagnato, V. S., & Pavarina, A. C. (2013). Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Sabouraudia, 51(3), 243-251. doi: 10.3109/13693786.2012.714081
Ekwenye, U. N., & Elegalam, N. N. (2005). Antibacterial activity of ginger (Zingiber officinale Roscoe) and garlic (Allium sativum L.) extracts on Escherichia coli and Salmonella typhi. International Journal of Molecular Medicine and Advance Sciences, 1(4), 411-416. https://medwelljournals.com/abstract/?doi=ijmmas.2005.411.417
Fillinger, S., & Elad, Y. (Eds.). (2016). Botrytis-the fungus, the pathogen and its management in agricultural systems (pp. 189-216). Cham, Switzerland: Springer International Publishing. dio:10.1007/978-3-319-23371-0
Le Grand, A., Wondergem, P. A., Verpoorte, R., & Pousset, J. L. (1988). Anti-infectious phytotherapies of the tree-savannah of Senegal (West-Africa) II. Antimicrobial activity of 33 species. Journal of ethnopharmacology, 22(1), 25-31. doi: 10.1016/0378-8741(88)90227-9
Osman, G. U. L., Mortas, M., Dervisoglu, M., Mehtap, E. R., Atmaca, M., & Atalar, İ. (2016). Furfural contents and some physical and chemical properties of raisins. Akademik Gıda, 14(3), 235-241.
Keskin, N., Kaya, O., Ates, F., Turan, M., & Gutiérrez-Gamboa, G. (2022). Drying grapes after the application of different dipping solutions: effects on hormones, minerals, vitamins, and antioxidant enzymes in Gök Üzüm (Vitis vinifera L.) raisins. Plants, 11(4), 529. https://doi.org/10.3390/plants11040529
Kursa, W., Jamiołkowska, A., Wyrostek, J., & Kowalski, R. (2022). Antifungal Effect of Plant Extracts on the Growth of the Cereal Pathogen Fusarium spp.—An In Vitro Study. Agronomy, 12(12), 3204. https://doi.org/10.3390/agronomy12123204.
Kushiro, M., Hatabayashi, H., Yabe, K., & Loladze, A. (2018). Detection of aflatoxigenic and atoxigenic Mexican Aspergillus strains by the dichlorvos–ammonia (DV–AM) method. Toxins, 10(7), 263. doi:10.3390/toxins10070263
Marchi, L., Dornellas, F., Polonio, J., Pamphile, J., Monteiro, A., Goncalves, O., & Perdoncini, M. (2019). Antifungal activity of Curcuma longa L.(Zingiberaceae) against degrading Filamentous Fungi. Chemical Engineering Transactions, 75, 319-324. DOI:10.3303/CET1975054.
Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed research international, 2014. http://dx.doi.org/10.1155/2014/186864
Murugesh, J., Annigeri, R. G., Mangala, G. K., Mythily, P. H., & Chandrakala, J. (2019). Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: An in vitro study. Journal of Oral and Maxillofacial Pathology: JOMFP, 23(2), 305. doi: 10.4103/jomfp.JOMFP_200_18
Nazzaro, F., Fratianni, F., Cozzolino, R., Martignetti, A., Malorni, L., De Feo, V., ... & d’Acierno, A. (2019). Antibacterial activity of three extra virgin olive oils of the Campania region, Southern Italy, related to their polyphenol content and composition. Microorganisms, 7(9), 321. doi: 10.3390/microorganisms7090321
Neda, B., & Shiva, Z. (2016). Inhibitory Effect of Curcumin on Candida-albicans compared with Nystatin: an in-vitro Study. Journal of Dental Materials & Techniques, 5(4).
Norajit, K., Laohakunjit, N., & Kerdchoechuen, O. (2007). Antibacterial effect of five Zingiberaceae essential oils. Molecules, 12(8), 2047-2060. doi: 10.3390/12082047
Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage (Vol. 519, p. 388). New York: Springer.
Ramadan, E. A., Ramadan, N. A., & Mohammed, A. A. H. (2022). aflatoxigenic fungi in nuts and dried fruits in mosul and duhok city. Mil. Med. Sci. Lett., 91(3), 224-234. DOI: 10.31482/mmsl.2021.049.
Rios, J. L., Recio, M. C., & Villar, A. (1987). Antimicrobial activity of selected plants employed in the Spanish Mediterranean area. Journal of ethnopharmacology, 21(2), 139-152. doi: 10.1016/0378-8741(87)90124-3
Sharifi-Rad, J., Rayess, Y. E., Rizk, A. A., Sadaka, C., Zgheib, R., Zam, W., ... & Martins, N. (2020). Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Frontiers in Pharmacology, 11, 01021.
Sofowora, A., Ogunbodede, E., & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10(5), 210-229. doi: 10.4314/ajtcam.v10i5.2
Söylemezoğlu, G., Atak, A., Boz, Y., Ünal, A., & Sağlam, M. (2016). Viticulture in Turkey. Chronica Horticulturae, 56(2), 27-31.
Sultan, S. M., Saady, A. M., & Irzoqy, M. E. (2018). A Comparative Study of the Effect of Alcoholic Extract of Turmeric Plant in Inhibiting the Growth of Candida Albicans. International Journal of Engineering and Technology, 7(4.37), 12-16.
Taylor, D. (2016). The Pharmaceutical Industry and the Future of Drug Development. Pharmaceuticals in the Environment: Volume 41, 41, 1. Doi: https://doi.org/10.10 39/9781782622345-00001
Upendra, R. S., Khandelwal, P., & Reddy, A. M. (2011). Turmeric powder (Curcuma longa Linn.) as an antifungal agent in plant tissue culture studies. International Journal of Engineering Science, 3(11), 7899-7904.
Verpoorte, R., Siwon, J., Van Essen, G. F. A., Tieken, M., & Svendsen, A. B. (1982). Studies on Indonesian medicinal plants. VII. Alkaloids of Arcangelisia flava. Journal of Natural Products, 45(5), 582-584. https://doi.org/10.1021/np50023a011
Wold, W. S., & Suzuki, I. (1976). The citric acid fermentation by Aspergillus niger: regulation by zinc of growth and acidogenesis. Canadian Journal of Microbiology, 22(8), 1083-1092. https://doi.org/10.1139/m76-159
Yusoff, S. F., Haron, F. F., Tengku Muda Mohamed, M., Asib, N., Sakimin, S. Z., Abu Kassim, F. & Ismail, S. I. (2020). Antifungal activity and phytochemical screening of Vernonia amygdalina extract against Botrytis cinerea causing gray mold disease on tomato fruits. Biology, 9(9), 286. doi:10.3390/biology9090286
Wold, W. S., & Suzuki, I. (1976). Regulation by zinc and adenosine 3′, 5′-cyclic monophosphate of growth and citric acid accumulation in Aspergillus niger. Canadian Journal of Microbiology, 22(8), 1093-1101. https://doi.org/10.1139/m76-160
Zhang, W., Chang, X., Wu, Z., Dou, J., Yin, Y., Sun, C., & Wu, W. (2020). Rapid isolation of non-aflatoxigenic Aspergillus flavus strains. World Mycotoxin Journal, 13(2), 277-286. DOI 10.3920/WMJ2019.2490
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)