Narjis, M. Abdulhussein Mayaada S. Mahdi


An opportunistic bacterium called Acinetobacter baumannii has significantly increased the frequency of infections in recent years. With only a limited number of “traditional” virulence factors, It is infections have spread rapidly through hospitals across the globe. The present study aimed to work out the relationship between the multi-drug resistance (MDR) of A. Baumannii and biofilm formation. A total of 150 samples were collected from various clinical sources from different age groups and gender patients in Ghazi AL Hariri Hospital and Baghdad Teaching laboratories in Medical City in Baghdad, Iraq from December 2021 to March 2022. Microscopical inspection and cultural features on various culture media, including culturing on selective medium CHROMagar, were used to identify bacterial isolates. The characteristics of the isolates were then established by some biochemical tests. Identification was confirmed using the Vitek-2 system with an accuracy of 99%, which revealed that only (50) isolates were given identical morphological characteristics and biochemical tests belonging to Acinetobacter baumannii isolates. 28 (56%) isolates were collected from burns. 10 isolates (20%) and 9 isolates (18% were collected from wound and sputum cultures of A. baumannii , respectively, while only 3 isolates (6%) were from urine culture. The susceptibility test for all the fifty clinical isolates of A. baumannii was performed against 10 different antibiotics. The results showed that A. baumannii isolates were Multidrug-resistant (MDR) (98%), while the other (2%) of the isolates were extensively drug-resistance (XDR) to themajority of antibiotics tested. All 50 isolates in the present study were subjected to the micro-titer plate (MTP) assay method (96 walls). The results indicated that strong biofilm was detected in 40 (80.0%) of the tested isolates. Thirty bacterial isolates were  were found to be MDR and had strong biofilm production.





Acinetobacter baumannii, Antibiotic susceptibility, Biofilm production, 16srRNA

Abbott, I.; Cerqueira, G.M.; Bhuiyan, S. & Peleg, A.Y. (2013). Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect There. 11(4), 395-409. DOI: 10.1586/eri.13.21
Ali, M.A. & Suhad, S.M. (2021). Molecular detection for efflux pump adeIJK genes of multi-drug resistance Acinetobacter baumannii isolated from different clinical sources. dissertation submitted in partial satisfaction of the requirement for the degree of Master thesis. P.51.
Almeida, C.; Azevedo, N. F.; Santos, S.; Keevil, C. W. & Vieira M. J. (2013). Correction: Discriminating Multi-Species Populations in Biofilms with Peptide Nucleic Acid Fluorescence in Situ Hybridization (PNA FISH). PloS one, 8(6),101-371. DOI:10.1371/journal.pone.0014786
Andrews, J.M. (2001). Determination of minimum inhibitory concentrations. The Journal of antimicrobial chemotherapy.48(1),5-16. DOI:10.1093/jac/48.suppl_1.5
Arjmand, R.; Porrostami, K.; Esteghamat, S.S.; Chaghamirzayi, P.; Sharifian, P.; Zahmatkesh, E. & Safari, O. (2020). Frequency and Antibiotic Susceptibility of Pseudomonas aeruginosa and Acinetobacter baumannii Infections in Pediatric Intensive Care Unit of Imam Ali Hospital, Karaj, Iran During 2017-2018. Int J Enteric Pathog, 8(1),15-18. DOI: 10.34172/ijep.2020.04
Babapour, E.; Haddadi, A.; Mirnejad, R.; Angaji, S.A. & Amirmozafari, N. (2016). Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multi-drug resistance. Asian Pac J Trop Biomed. 6(6),528-33. DOI:10.1016/j.apjtb.2016.04.006
Bardbari, A.M.; Arabestani, M.R.; Karami, M.; Keramat, F.; Alikhani M.Y. & Bagheri, K.P. (2017). Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microbial Pathogenesis. 108,122-128. Doi: 10.1016/j.micpath.2017.04.039
Beceiro, A.; Moreno, A.; Fernández, N.; Vallejo, J.A.; Aranda, J. & Adler, B. (2014). Biological cost of different mechanisms of colistin resistanceand their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents Chemother. 58,518-526. DOI: 10.1128/AAC.01597-13
Beggs, C.; Kerr, K.; Snelling, A. & Sleigh, P.  (2006). Acinetobacter spp. and the clinical environment. Indoor Built Environ. 15,19-24. DOI:10.1177/1420326X06062
Castilho, S.; Godoy, C.; Guilarde, A.; Cardoso, J.L.; Andre, M. & Junqueira-Kipnis, A.P. (2017) Acinetobacter baumannii strains isolated from patients in intensive care units in Goia nia, Brazil: Molecular and drug susceptibility profiles. PLoS ONE 12(5),0176790. DOI:10.1371/journal.pone.0176790
Ciftci, A.Y.; Karakece, E. & Atasoy, A.R. (2015). Culture media for detection of Acinetobacter baumannii selective media for detection of A baumannii. Journal Microbiology and Experimentation, 2(3),87-90.
Corneliu, O.; Cristina, F.; Alexandru, A.; Irina, G.; Luminita, M.; Marcela, P.; Ilda, C.; Gratiela, G.; Elena, G. & Mariana, C. (2021). Escaping from ESKAPE. Clinical Significance and Antibiotic Resistance Mechanisms in Acinetobacter baumannii: a Review. Biointerface Research in Applied Chemistry. 11(1),8190-8203. DOI:10.33263/BRIAC111.81908203
Dan, N.; Yue, H.; Zhou, C.; Mingkai, L.; Zheng, H.; Xiaoxing, L. &  Xiaoyan, X. (2020).  Journal of Biomedical Science , Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. Biomed Sci. 27:26. DOI: 10.1186/s12929-020-0617-7
Dema, M.; Mazin, k.D. & Thanaa, R.D. (2020). Study the effectiveness of the ZnO nanoparticles on the multi-drug resistance Acinetobacter baumannii and Staphylococcus aureus isolates. (109),55-56.
Gaby, W.L.; & L. Free. (1958). Differential diagnosis of pseudomonas-like microorganisms in the clinical laboratory. J. Bateriol. 76,442-444.
Haider, H. & Jabbar, S.D. (2020). Detection of plasmid-mediated Colistin resistance genes (mcr-1 to mcr-5) in Acinetobacter baumannii recovered from nosocomial versus community acquired wound infection. (74),36-37.
Hoban, D.J.; Bouchillon, S.K.; Johnson, B.M.; Johnson, J.L. & Dowzicky, M.J. (2005). In vitro activity of tigecycline against 6792 gram-negative and gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program, 2004). Diagn. Microbiol. Infect. 52,215-227. DOI: 10.1016/j.diagmicrobio.200 5.06.001
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15,55-63.
Ilkay,  K.; Yasemin,  Z.; Vuslat, K.; Ayse, O. & Mustafa, N. (2013). In vitro synergistic activity of colistin with tigecycline or β-lactam antibiotic/β-lactamase inhibitor combinations against carbapenem-resistant Acinetobacter baumannii. Journal of International Medical Research.41,1779-1847. DOI: 10.1177/0300060513496172
Joyanes, P.; Conejo, M.; Martinez-Martinez, L. & Perea, E.J. (2001). Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples. Journal of clinical microbiology, 39(9),3247-3253. DOI:10.1128/JCM.39.9.3247-3253.2
Khaldi, H.; Maoualainine, M.F.; Younous, S. & Soraa, N. (2017). Epidemiology of Acinetobacter baumannii Infection in a University Hospital. J Pathol & Microbiol .2(1).
MacFaddin, J.F (1972). Biochemical tests for the identification of medical bacteria. Williams and Wilkins Company, Baltimore, MD.
Malini, A.; Deepa, E.; Gokul, B. & Prasad, S. (2009). Nonfermenting gram-negative bacilli infections in a tertiary care hospital in Kolar, Karnataka. J Lab Physicians. 1(02),62-66. DOI: 10.4103/0974-2727.59701
Maria, P.M. (2009). Citrate Test Protocol. American Society for Microbiology. https://asm.org/Protocols/Citrate-Test-Protocol.
Maria, P.M. (2009). Indole Test Protocol. American Society for Microbiology. IP:
Mary, A.L. (2022). Acinetobacter baumannii: Virulence Strategies and Host Defense Mechanisms, DNA and Cell Biology. 41 (1),43-48. DOI:10.1089/dna.2021.0588
McFadden, J.F. (2000). Biochemical Test for Identification of Medical Bacteria. (3).
Schroeder, M., Brooks, B. D., & Brooks, A. E. (2017). The complex relationship between virulence and antibiotic resistance. Genes, 8(1), 39. DOI:10.3390/genes8010039
Ming, L.; Yun, L. & Chung, L. (2022). Characterization of biofilm production in different strains of Acinetobacter baumannii and the effects of chemical compounds on biofilm formation. National library of medicine.32523805.
Moran-Gilad, J.; Adler, A., Schwartz, D., Navon-Venezia, S. & Carmeli, Y. (2014). Laboratory evolution of different agar media for isolatuion of carpapeneim- resistance Acinetobacter spp. Eur J Clin Microbiol Infect Dis .33,1901-1913. DOI:10.1007/s10096-014-2159-y
Nahar, A., Anwar, S., & Miah, M. R. A. (2013). Association of biofilm formation with antimicrobial resistance among the Acinetobacter species in a tertiary care hospital in Bangladesh. Journal of Medicine, 14(1), 28-32. DOI: 10.3329/jom.v14i1.14533
Parra-Millan, R.; Guerrero-Gomez, D.; Ayerbe-Algaba, R.; Pachon-Ibanez, M.E.; Miranda-Vizuete, A.; Pachon, J. & Smani, Y. (2018). Intracellular Trafficking and Persistence of Acinetobacter baumannii Requires Transcription Factor EB. mSphere. 3(18),106. DOI:10.1128/mSphere.00106-18
Patricia, S. and Laura, C. (2010). Oxidase Test Protocol. American Society for Microbiology. IP:
Peleg, A.Y.& Hooper, D.C. (2010). Hospital-acquired infections due to gram negative bacteria. The New England journal of medicine. 362(19),1804- 1813. DOI: 10.1056/NEJMra0904124
Peleg, A.Y., Seifert, H. &  Paterson, D.L. (2008).  Acineto bacter baumannii: emergence of a successful pathogen. Clin Microbiol 21(82),538. DOI:10.1128/CMR.00058-07
Peymani, A.; Nahaei, M.; Farajnia, S.; Hasani, A.; Mirsalehian, A.; Sohrabi, N. & Abbasi, L. (2011). High Prevalence of Metalo-B-LactamaseProducing Acinetobacter baumannii in a Teaching Hospital inTabriz, Iran. Jpn. J. Infect. Dis. 64,69-71. DOI: 10.7883/yoken.64.69
Raghda, A.T.; Hadi, R.R. & Zahraa, J.J. (2018). Genetic and Molecular study of Acintobacter baumannii isolated from different infection with relationship of Phage in Diyala province. dissertation submitted in partial satisfaction of the requirement for the degree of Master thesis. P. 47.
Rice, L.B. (2008). "Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE". The Journal of Infectious Diseases. 197 (8),107981. DOI: 10.1086/533452
Safari, M.; Saidijam, M.; Bahador, A.; Jafari, R. & Alikhani, M.Y. (2013). High prevalence of multi-drug resistance and metallo-beta-lactamase (MβL) producing Acinetobacter baumannii isolated from patients in ICU wards, Hamadan, Iran. Journal of research in health sciences, 13(2),162–167.
Saif, A. & Wathiq, A. (2019). Study of Antibiotic Resistance of Acinetobacter baumannii in Intensive Care Units (I.C. Us) and Burn Patients. Iraqi Journal of Biotechnology. 181,32-36.
Saife, D.A.; Abdul Mu, M. & Zainab, H.A. (2021). Molecular Detection of Acientobacter Baumannii Isolated from Nosocomial Infections in Baghdad Hospitals. Annals of R.S.C.B. 25(3),4450-4454.
Salimizand, H.; Zomorodi, A.R.; Mansury, D.; Khakshoor, M.; Azizi, O.; Khodaparast, S.; Baseri, Z.; Karami, P.; Zamanlou, S.; Farsiani, H.; Amini, Y.; Moradi, B.; Meshkat, Z.; Salimizand, H.; Hasanzadeh, S. & Sadeghian, H. (2018). Diversity of aminoglycoside modifying enzymes and 16SrRNA methylases in Acinetobacter baumannii and Acinetobacter nosocomialis species in Iran; wide distribution of aadA1 and armA. Infection, genetics and evolution. journal of molecular epidemiology and evolutionary genetics in infectious diseases, 66,195-199. DOI:10.1016/j.meegid.2018.09.028
Si, M. M.; Nadeem, O. K.; Sophie, O. & Hazel M. (2010). The Internal Transcribed Spacer Region, a New Tool for Use in Species Differentiation and Delineation of Systematic Relationships within the Campylobacter Genus. American Society for Microbiology. 76(10),3071-3081. DOI:10.1128/AEM.02551-09
Smani, Y.; Fàbrega, A.; Roca, I.; Sanchez-Encinales, V.; Vila, J. & Pachon, J. (2014). Role of OmpA in the multi-drug resistance phenotype of Acinetobacter baumannii. Antimicrob Agents Chemother 58,1806-1808. DOI:10.1128/AAC.02101-13
Sofia, C.; Angela, R.; Luminiţa, S.I.; Raluca, F. & Iuliana, T. (2004). Cultural and biochemical characteristics of Acinetobacter spp. Strains isolated from hospital units. The journal of preventive medicine, 2(3-4), 35-42.
Sun, D.; Crowell, S.A.; Harding, C.M.; Silva, P.M.; Harrison, A.; Fernando, D.M.; Mason, K.M.; Santana, E.; Loewen, P.C.; Kumar, A. & Liu, Y. (2016). KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic respiratory burst. Life sciences, 148,31-40. DOI: 10.1016/j.lfs.2016.02.015
Sura, S.T.; Thanaia, R.A. & Shatha, H.A. (2018). Detection of OmpA and Bap genes in MDR clinical isolates of Acinetobacter baumannii and their role in biofilm formation. dissertation submitted in partial satisfaction of the requirement for the degree of Master thesis. P.38.
Torlak, E.; Korkut, E.; Uncu, A.T. & Şener, Y. (2017). Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health, 10(6),809-813.DOI: 10.1016/j.jiph.201 7.01.004
Urdan, T.C. (2005). Statistics In Plain English, 2nd ed. Lawrence Erlbaum Associates, London. 130-143.
Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B. & Chifiriuc, M.C. (2020). Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms, 8(6),935. DOI: 10.3390/microorganisms8060935
Wieczorek, P.; Sacha, P.; Hauschild, T.; Zorawski, M.; Krawczyk, M. & Tryniszewska, E. (2008). Multi-drug resistant Acinetobacter baumannii the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Multi-drug resistant Acinetobacter baumannii the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochem Cytobiol. 46(3). DOI:10.2478/v10042-008-0056-x
Wieland, K.; Chhatwal, P.; & Vonberg, R.P. (2018). Nosocomial outbreakscaused by Acinetobacter baumannii and Pseudomonas aeruginosa: results of asystematic review. Am. J. Infect. Control 46,643-648. DOI: 10.1016/j.ajic.20 17.12.014
Zainab, J.; Haider, S.D. & Ahmed, S.D. (2018). Genomic analysis for antibiotic resistance determinants of multi-drug resistant Acinetobacter baumannii and detection of antibacterial effect of Peganum harmala L. seeds extract: in vitro study. (203),99-90.
Zeina, A.; Kanafani, M.D.; Souha, M.S. & Kanj, M.D. (2022). Acinetobacter infection: Treatment and prevention. Wolters Kluwer. 35948242.
Research Articles

How to Cite

Isolation and identification of multi-drug resistance Acinetobacter baumannii isolated from clinical samples at Baghdad, Iraq. (2023). Journal of Applied and Natural Science, 15(2), 663-671. https://doi.org/10.31018/jans.v15i2.4499