Johny Joseph Jayaram Reddy D. Sayantan Bincy Cyriac Sumona Sanyal Das


Chromium is a harmful heavy metal to the environment due to the toxicity induced by it to plants and other living organisms. High concentration of Cr in soil poses severe toxicological problems ecosystem. Phytoremediation using different plants is an economical and environment-friendly method for removing Cr from soil. The addition of chelating agents augments the phytoextraction using plants.The present study aimed to augment the Cr phytoremediation capacity of Amaranthus virdis, a predominant plant species in the Cr-contaminated open dumpsites of Bangalore. . Phytoextraction of Cr by Amaranthus viridis was studied in the presence of different chelating agents viz. ethylenediaminetetraacetic acid (EDTA), citric acid (CA), growth promoting hormone- indoleacetic acid (IAA) and NPK fertiliser. A. viridis grown under different concentrations (5, 10 and 20 mg/Kg) of Cr were treated with 0.5g EDTA/Kg of soil, 0.5g CA/Kg of soil, 1mg IAA/Kg of soil and NPK (125 mg of nitrogen, 45 mg of phosphorous and 156 mg of potassium per Kg of soil). Results indicated that CA, at 10 mg/kg Cr supply, induced the highest uptake (up to 29.25 µg/plant). Furthermore, the study revealed that CA amendment induced maximum Cr uptake in A. viridis at all levels of Cr supply as compared to other amendments. This was due to the increased solubility of Cr in the presence of citric acid and the amelioration of oxidative stress due to Cr to plants by citric acid. This study inferred that the non-hyperaccumulating plant, A. virdis could be used as a phytoremediator for Cr in the presence of citric acid in the places where it is grown abundantly.    


Download data is not yet available.


Metrics Loading ...




Amaranthus virdis, Chelating agents, Chromium, Phytoremediation

Abebaw, G. & Abate, B. (2018). Chrome Tanned Leather Waste Dechroming Optimization for Potential Poultry Feed Additive Source: A Waste to Resources Approach of Feed for Future. J Environ Pollut Manag., 1(1), 16–18.
Alloway, B.J. (1990). Heavy Metals in Soils, Blackie and Son Ltd., Glasgow, 100-124.
Al Mahmud, J., Bhuyan, M.H.M.B., Anee, T.I., Nahar, K., Fujita, M., Hasanuzzaman, M. (2019). Reactive Oxygen Species Metabolism and Antioxidant Defense in Plants Under Metal/Metalloid Stress. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_10
Amin, H., Arain, B. A., Abbasi, M. S., Amin. F, Jahangir. T. J. & Soomro. N. A. (2019). Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation, Int. J Phytoremediation., 21(4), 352-363, https://doi.org/10.1080/15226514.2018.1524837
Anjum, S.A., Ashraf, U., Khan, I., Tanveer, M., Shahid, M., Shakoor. A. & Wang, L. (2017). Phyto-toxicity of chromium in maize: Oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere., 27, 262–273. https://doi.org/10.1016/S1002-0160(17)60315-1
Asgher, M., Per, T.S., Verma, S. et al. (2018). Ethylene Supplementation Increases PSII Efficiency and Alleviates Chromium-Inhibited Photosynthesis Through Increased Nitrogen and Sulfur Assimilation in Mustard. J Plant Growth Regul., 37, 1300–1317. https://doi.org/10.1007/s00344-018-9858-z
Bashri. G., Parihar, P., Singh. R., Singh. S., Singh. V. P. & Prasad. S. M. (2016). Physiological and biochemical characterization of two Amaranthus species under Cr(VI) stress differing in Cr(VI) tolerance. Plant Physiol. Biochem., 108, 12-23. https://doi.org/10.1016/j.plaphy.2016.06.030.
Basit, F., Bhat, J. K., Dong, Z., Mou, Q., Zhu, X., Wang, Y., et al., (2022). Chromium toxicity induced oxidative damage in two rice cultivars and its mitigation through external supplementation of brassinosteroids and spermine. Chemosphere., 320, https://doi.org/10.1016/j.chemosphere.2022.134423
Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., TorresGuzmán, J. C & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev., 25(3), 335–347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x
Dotania, M. L., Thakur, J. K., Meena,V.D., Jajoria, D.K & Gopal.R. (2014). Chromium Pollution -A threat to environment -A review. Agric. Rev., 35(2), 153-157. http://dx.doi.org/10.5958/0976-0741.2014.00094.4
Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W. & Rizwan, M. (2014). Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol. Environ. Saf., 106, 164–172. https://doi.org/10.1016/j.ecoenv.2014.03.007
Farid, M., Ali, S., Ali, R.Q., Abbas, F., Bukhari, S. A. H., Saeeda, R. & Wuc, L. (2017). Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol. Environ. Saf., 145, 90-102. https://doi.org/10.1016/j.ecoenv.2017.07.016
Farraji, H., Zaman, N. Q., Tajuddin, R. M. & Faraji. H. (2016). Advantages and disadvantages of phytoremediation: A concise review. Int. J. Environ. Tech. Sci.,. 2, 69-75.
Feng, Y., Yu, X., Mo, C. & Lu. C. (2019). Regulation Network of Sucrose Metabolism in Response to Trivalent and Hexavalent Chromium in Oryza sativa. J. Agric. Food Chem., 67(35), 9738-9748. https://doi.org/10.1021/acs.jafc.9b01720
Jean-Soro, L., Bordas, F. & Bollinger, J. (2012). Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environ. Pollut., 164, 175-181. https://doi.org/10.1016/j.envpol.2012.01.022.
Liu, L., Li, W., Song, W & Guo, M. (2018). Remediation techniques for heavy metalcontaminated soils: Principles and applicability. Sci. Total Environ., 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161
Mallhi, A.I., Chatha, S. A. S., Hussain, A. I., Rizwan, M., Bukhar, S. A. H., Hussain. A., et al. (2020). Citric Acid Assisted Phytoremediation of Chromium through Sunflower Plants Irrigated with Tannery Wastewater. Plants., 9, 380. https://doi.org/10.3390/plants9030380
Malik, Z., Afzal, S., Dawood, M., Abbasi, G. H., Khan, M. I., Kamran, M., et al. (2022). Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. Environ. Geochem. Health, 44, 1451–1469. https://doi.org/10.1007/s10653-021-00908-z
Manar, S. M., Mfarrej, F. B., Rizwan, M., Hussain, A., Shahid, M.J.,et al. (2022). Microbe-citric acid assisted phytoremediation of chromium by castor bean (Ricinus communis L.). Chemosphere., 296. https://doi.org/10.1016/j.chemosphere.2022.134065
Menhas, S., Yang, Y., Hayat, K., Aftab, T., Bundscuh, J., et al. (2022). Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efciency by Ameliorating Cd‑Induced Stress in Oilseed Crops: A Review. J. Plant Growth Regul., 41, 922-935. https://doi.org/10.1007/s00344-021-10349-8
Maqbool, A., Ali, S., Rizwan, M., Ishaque, W., Rasool, N., et al. (2018). Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ. Sci. Pollut. Res., 25, 10848–10856. https://doi.org/10.1007/s11356-018-1352-4
Pal, S. (2020). Screening of chromium tolerance potential of few weeds of Kolkata and assessment of phytoextraction efficiency. Pollut. Res., 39(3), 753-762.
Qureshi, F. F., Ashraf, M. A., Rasheed, R., Ali, S., Hussain, I., et al. (2020). Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). Sci. Total Environ., 716, 137061. https://doi.org/10.1016/j.scitotenv.2020.137061
Ramanlal, D. B., Kumar, R. N., Kumar, N & Thakkar, R. (2020). Assessing potential of weeds (Acalypha indica and Amaranthus viridis) in phytoremediating soil contaminated with heavy metals‑rich effluent. SN Appl. Sci., 2, 1063. https://doi.org/10.1007/s42452-020-2859-0.
Riaz, M., Yasmeen, T., Arif, M. S., Ashraf, M.A., Hussain, Q., et al. (2019). Variations in morphological and physiological traits of wheat regulated by chromium species in long-term tannery effluent irrigated soils. Chemosphere, 222, 891-903. https://doi.org/10.1016/j.chemosphere.20 19.01.170
Saleh, D., Sharma, M., Seguin, P. & Jabaji, S. (2020). Organic acids and root exudates of Brachypodium distachyon: effects on chemotaxis and biofilm formation of endophytic bacteria. Canadian J. Microbiol., 13, 418. https://doi.org/10.1139/cjm-2020-0041
Samarana, S., Ali, A., Muhammad, U., Azizullah, A., Ali, H., et al. (2020). Environ. Pollut., 266(1). https://doi.org/10.101 6/j.envpol.2020.115394
Sayantan, D & Shardendu. (2013). Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities. Ecotoxicol. Enivron. Saf.,, 95, 161-170. https://doi.org/10.1016/j.eco env.2013.05.037
Sharma, A., Kapoor, D., wang, J., Shahzad, B., Kumar, V., et al. (2020). Chromium bioaccumulation and its impacts on plants: An Ooverview. Plants., 9(1), 100 https://doi.org/10.3390/plants9010100
Song, Y., Ammami, M.T., Benamar, A., Mezazigh, S. & Wang. H. (2016). Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ. Sci. Pollut. Res., 23, 10577–10586. https://doi.org/10.1007/s11356-015-5966-5
Srivastava, D., Tiwari, M., Dutta, P., Singh, P., Chawda, K., et al. (2021). Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation. Sustainability, 13, 4629. https://doi.org/10.3390/su13094629
Wang, K., Liu, Y., Song, Z., Wang, D. & Qiu. W. (2019). Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere, 237, 1-8. https://doi.org/10.1016/j. chemosphere.2019.124480
Wiszniewska, A., Hanus-Fajerska, E., MuszyŃska, E. & Ciarkowska, K. (2016). Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere, 26(1), 1–12. https://doi.org/10.1016/S1002-0160 (15)60017-0
Yang, J., You, S. & Zheng. J. (2019). Review in strengthening technology for phytoremediation of soil contaminated by heavy metal. Conf. Series: Earth and Environ. Sci. 242, https://doi.org/10.1088/1755-1315/242/5/052003
Zhou, J. M., Dang, Z., Chen, N., Xu, S. & Xie, Z. (2007). Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid. Huan Jing Ke Xue., 28(9), 2085-2088.
Citation Format
How to Cite
Joseph, J., Reddy, J., Sayantan, D., Cyriac, B., & Das, S. S. (2023). Comparative study of phytoremediation of chromium contaminated soil by Amaranthus viridis in the presence of different chelating agents. Journal of Applied and Natural Science, 15(2), 639–648. https://doi.org/10.31018/jans.v15i2.4481
More Citation Formats:
Research Articles