##plugins.themes.bootstrap3.article.main##

VR. Mageshen https://orcid.org/0000-0001-6611-6223 P. Santhy

Abstract

Iodine deficiency occurs when iodine levels in the soil are inadequate, resulting in limited crop uptake and, as a result, a population with insufficient iodine intake. Iodine deficiency can be avoided by biofortifying commonly consumed crops with iodine. A field experiment was conducted to investigate the effect of iodine biofortification on the nutrient uptake of fruits and plants of ‘shivam’ hybrid tomato. Potassium iodate and chitosan were applied in the form of soil, foliar, and chitosan iodate complex with control comprising 16 treatments (T1 to T16) at different stages of plant growth. Iodine accumulation in tomato fruits and plants was achieved by combining foliar and iodine chitosan forms as electrostatic interaction between chitosan and iodate prevents volatilization and gradually increases the bioavailability of iodine from soil to fruits. Biofortification of iodine throughT14- Chitosan-KIO3Complex (CsKIO3) - (SA)-10Kgha-1 + FA-KIO3-0.3% @ 60 and 90 DAT the iodine content in tomato fruit at green (0.95ppm), pink (1.01ppm) and red ripen (0.99ppm) stages of tomato and introducing it in present-day daily diet may help to reduce iodine deficiency disorder. Iodine biofortification also influenced the uptake of nitrogen, phosphorous and potassium in plants and fruits of tomatoes.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biofortification, Chitosan, Iodine, Tomato, Volatilization

References
Abdelgawad, K.F., El-Mogy, M.M., Mohamed, M.I.A., Garchery, C. & Stevens, R.G. (2019). Increasing Ascorbic Acid Content and Salinity Tolerance of Cherry Tomato Plants by Suppressed Expression of the Ascorbate Oxidase Gene. Agronomy,9, 51.
Alagawany, M., Elnesr, S.S., Farag, M.R., Tiwari, R., Yatoo, M.I., Karthik, K., Michalak, I. & Dhama, K. (2021). Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health–a comprehensive review. Veterinary Quarterly, 41(1),1-29. DOI:10.1080/01652176.2020.1857887
Bertinato, J. (2021). Iodine nutrition: Disorders, monitoring and policies.  Advances in Food and Nutrition Research, 96, 365-415. DOI: 10.1016/bs.afnr.20 21.01.004
Chen, J., Yang, X., Geng, J., Wang, Y., Liu, Q., Zhang, H., Hao, X., Guo, Z. & Chen, H. (2021). Controlled-release potassium chloride containing mepiquat chloride improved bioavailability of soil potassium and growth of cotton plants. Archives of Agronomy and Soil Science, 67(13), 1901-1915. DOI: https://doi.org/10.108 0/0365 0340.2020.1817902
Court, S., Kerr, C., Ponce de León, C., Barker, B.D., Smith, J.R. & Walsh, F.C.(2018). The influence of iodate ion additions to the bath on the deposition of electroless nickel on mild steel. Transactions of the IMF, 96(5),275-284. DOI: https:/doi.org/10.1080/00202967.20 18.1503 852
Dávila-Rangel, I.E., Leija-Martínez, P., Medrano-Macías, J., Fuentes-Lara, L.O., González-Morales, S., Juárez-Maldonado, A. & Benavides-Mendoza, A. (2019). Iodine biofortification of crops. Nutritional Quality Improvement in Plants, 79-113.DOI:https://doi.org/10.3389/fpls.20 21.638671
Gonzali, S., C. Kiferle & P. Perata. (2017). Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology. 44, 16–26.  DOI: 10.1016/j.copbio.20 16.10.004
Grzanka, M., Smoleń, S. & Kováčik, P., 2020. Effect of vanadium on the uptake and distribution of organic and inorganic forms of iodine in sweet corn plants during early-stage development. Agronomy, 10(11),1666.
Kanmani, P., Aravind, J., Kamaraj, M., Sureshbabu, P. & S. Karthikeyan (2017). Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresource Technology, 242: 295-303.DOI: 10.1016/j.biortech.2017.03.119
Knapp, G., B. Maichin, P. Fecher, S. Hasse&Schramel, P. (1998). Iodine determination in biological materials options for sample preparation and final determination. Fresenius' journal of analytical chemistry, 362(6),508-513.
Kutlu, I.,Gulmezoglu, N. & Smoleń, S. (2022). Comparison of Biologically Active Iodine and Potassium Iodide Treatments in Increasing Grain Iodine Content and Quality of Oats. Journal of Plant Growth Regulation,1-11. DOI: 10.1007/s00344-022-10744-9
Limchoowong, N., P. Sricharoen, M.Konkayan, S. Techawongstien & S. Chanthai. (2018). A simple, efficient and economic method for obtaining iodate-rich chili pepper based chitosan edible thin film. Journal of food science and technology, 55(8), 3263-3272. DOI: 10.1007/s13197-018-3260-5
Mandi, S., Nayak, S., Shivay, Y.S. & Singh, B.R. (2021). Soil Organic Matter: Bioavailability and Biofortification of Essential Micronutrients. Soil Organic Matter and Feeding the Future, 203-234.
Nezami, Q.U.A., Abbas Shah, G., Hassan, Z., Niazi, M.B.K., Sadiq, M., Bran, A., Arthur, K., Iqbal, Z., Mahmood, I., Ali, N. & Rashid, M.I. (2021). Potassium Plus Biopolymer Coating Controls Nitrogen Dynamics of Urea in Soil and Increases Wheat Production. Coatings, 11(7),804. DOI: https://doi.org/10.3390/coatings11070804
Ojok, J., Omara, P., Opolot, E., Odongo, W., Olum, S., Gijs, D.L., Gellynck, X., De Steur, H. & Ongeng, D. (2019). Iodine agronomic biofortification of cabbage (Brassica oleracea var. capitata) and cowpea (Vigna unguiculata L.) is effective under farmer field conditions. Agronomy, 9(12),797. DOI: https://doi.org/10.33 90/agronomy9120797
Rehman, A.U., Nazir, S., Irshad, R., Tahir, K., ur Rehman, K., Islam, R.U. & Wahab, Z. (2021). Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids, 321,114455. DOI:10.10 16/j.molliq.2020.114455
Smoleń, S., Kowalska, I., Kováčik, P., Sady, W., Grzanka, M. &Kutman, U.B., (2019). Changes in the chemical composition of six lettuce cultivars
(Lactuca sativa L.) in response to biofortification with iodine and selenium combined with salicylic acid application.  Agronomy, 9(10), 660.DOI: https://doi.org/10.3390/agronomy9100660
Sularz, O., Smoleń, S., Koronowicz, A., Kowalska, I. &Leszczyńska, T. (2020). Chemical composition of lettuce (Lactuca sativa L.) biofortified with iodine by KIO3, 5-Iodo-, and 3.5-diiodosalicylic acid in a hydroponic cultivation. Agronomy, 10(7), 1022. DOI: https://doi.org/10.3390/agrono my10071022
Tadesse, S., Hymete, A., Lieberman, M., Gebreyesus, S.H. & Ashenef, A. (2022). Iodine status, household salt iodine content, knowledge and practice assessment among pregnant women in Butajira, South Central Ethiopia. Plos one, 17(11).
World Health Organization. (‎2013)‎. World health report 2013: research for universal health coverage. World Health Organization.  https://apps.who.int/iris/handle/10 665/85761
Yadav, B.K. & Sidhu, A.S. (2016). Dynamics of potassium and their bioavailability for plant nutrition. In Potassium solubilizing microorganisms for sustainable agriculture, Springer,187-201.DOI: 10.1007/978-81-322-2776-2_14
Section
Research Articles

How to Cite

Effect of chitosan iodate complex biofortification on nutrient uptake in ‘shivam’ hybrid of tomato (Solanum lycopersicum L.). (2023). Journal of Applied and Natural Science, 15(2), 549-554. https://doi.org/10.31018/jans.v15i2.4461