Article Main

Taraq H. Y. Al-Maliky Eman A. AL-Imara Mahmood S. Hashim P. N. Geetha

Abstract

The rearing of juvenile shrimp, Macrobrachium nipponense is of importance in the development of aquaculture, especially by using molasses and Bacillus lechniformis to promote growth. The present study aimed to evaluate the rearing of juvenile shrimp, M. nipponense in laboratory breeding ponds without replacing the water in the presence of B. lechniformis using two strategies: i)  Use of molasses (10=A, 50=B, and 100=C mg) with 1 × 10 ⁸ CFUml-1 B. lechniformis to the ponds, with shrimp in initial weight rates (650.00 ± 68.09, 639.67 ± 74.81, 639.67 ± 67.02) mg and final weight rates (695.67 ± 57.33, 825.00 ± 90.14, 761.33 ± 111.02) mg, ii) Use of feed (100=A, 250-B, and 500=C) mg, with shrimp initial weight rates (107.67 ± 21.94, 106.67 ± 20.82, 103.33 ± 18.93) mg and final weight rates (208.33 ± 16.07, 381.67 ± 36.17, 283.33 ± 15.28) mg. Results of statistical analysis for molasses showed significant differences (p < 0.05) in each daily growth (DG), Specific growth rate (SGR), and no significant differences (p > 0.05) in survival rates. As food conversion ratio (FCR), significant differences (p < 0.05) were found between A and B, contrary to C, which showed no significant differences. There were significant differences (p < 0.05) in DG among A, B, and C in using feed. While SGR showed significant differences (p < 0.05) between A and B but did not have significant differences with C and no significant differences (p > 0.05) in the survival rates.  FCR showed significant differences (p < 0.05) between C and both A and B, which showed no significant difference (p > 0.05) between them. The study will help to reduce the cost and waste of water.      

Article Details

Article Details

Keywords

Aquaculture technology, Bacillus lechniformis, Biofloc., Feeding, Nutrition, Shrimp farming

References
Alfiansah, Y.R., Harder, j., Slater, M.J. & Gardes, A. (2022). Addition of Molasses Ameliorates Water and Bio-Floc Quality in Shrimp Pond Water. Trop Life Sci Res., 33(1), 121-141.  doi: 10.21315/tlsr2022.33.1.8. Epub.
Al-Imara, E.A. & Al-Gazzawy, G.J. (2016). Antibacterial activity of secondary metabolites from Bacillus spp. Isolated from Basrah, Iraq. Arab Gulf. J. Sci. Res., 34(1-2), 35–42.
Al-Maliky, T.H.Y. (2013). Manual and characters of common shrimp species in Southern Iraqi waters. Deposit number in the House of Books and Documents in Baghdad 756, 2013 - Publications of the Center for Marine Sciences - Basra University – Iraq. 192 pp.
Al-Maliky, T.H.Y., Al-Maliky, A.M., Al-Maliki, G.M.J. & Boyd, C.E. (2021). Effects of prebiotic and molasses on water quality, growth and survival of Metapenaeus affinis and Macrobracium nipponense in vitro, without changing water or adding pellets. Egyp. J. Aqua. Bio. Fish., 25(4), 767 – 783.
APHA. (1998). Standard Methods for the Examination of Water and Waste Water, 20th Edition. American Public Health Association, Washington DC.
Aruwa, C.E. & Olatope, S. (2015). Characterization of Bacillus Species from Convenience Foods with Conventional and API Kit Method: A Comparative Analysis.
Avnimelech, Y. (2015). Biofloc technology: A practical guide book. 3rd ed. Baton Rouge, LA: World Aquaculture Society.
Cienfuegos, M.K., Monroy-Dosta, M.D.C., Hamdan-Partida, A., Hernández-Vergara, M.P., Aguirre-Garrido, J.F. & Bustos-Martínez, J. (2022). Effect of the probiotic Lactococcus lactis on the microbial composition in the water and the gut of freshwater prawn (Macrobrachium rosenbergii) cultivate in biofloc. Aquac. Res., 00, 1–13. DOI: 10.1111/are.15889.
Cienfuegos, M.K., Monroy-Dosta, M.D.C., Hamdan-Partida, A., Hernández-Vergara, M.P., Becerril-Cortés, D. & E López-García, E. (2020). A review of the use of probiotics in freshwater prawn (Macrobrachium sp.) culture in biofloc systems. La. Ameri. J. Aquat. Res., 48 (4), 518-528. DOI: 10.3856/vol48-issue4-fulltext-2464.
Dutra, F.M., Ronnau, M., Sponchiado, D., Fornek, S.C., Freire, C.A. & Ballester, E.L.C. (2017). Histological alterations in gills of Macrobrachium amazonicum juveniles exposed to ammonia and nitrite. Aquatic Toxicology.187, 115-123.
Ekasari, J., Azhar, M.H., Surawidjaja, E.H., Nuryati, S., Schryver, P.D. & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol. 41(2), 332-339.
FAO. (2016). The State of World Fisheries and Aquaculture. FAO.
FAO. (2018). The State of World Fisheries and Aquaculture. FAO.
Hlordzi, V., Kuebutornye, F.K.A., Afriyie, G., Abarike, E.D., Lu, Y., Chi, S. & Anokyewaa, M.A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquac. Rep., 18, 10053.
Hoseinifar, S.H., Sun, Y-Z. & Caipang, C.M. (2017). Short chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac. Res., 48, 1380–1391.
Jahangiri, L. & Esteban, M. (2018). Administration of probiotics in the water in finfish aquaculture systems: A review. Fishes., 3, 33.
Liu, H., Li, H., Wei, H., Zhu, X., Han, D., Jin, J., Yang, Y. and Xie, S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquacul., 506: 256-269.
Luna-Gonzalez, A., Avila-Leal, J., Fierro-Coronado, j., Alvarez-Ruiz, P., Esparza-Leal, H., Escamilla-Montes, R., Flores-Mirana, M.D.C., Montiel-Montoya, J. & Lopez-Alvarez, ES. (2017). Effects of bacilli, molasses, and reducing feeding rate on biofloc formation, growth, and gene expression in Litopenaeus vannamei cultured with zero water exchange. Lat. Am. J. Aquat. Res., 45 (5), 900-907.
Madani, N.S.H., Adorian, T.J., Farsani, H.G. & Hoseinifar, S.H. (2018). The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) post larvae. Aquac. Res., 49(1), 1-8.
Maia, E.P., Modesto, G.A., Brito, L.O., Galvez, A.O. & Gesteira, TCV. (2016). Intensive culture system of Litopenaeus vannamei in commercial breeding tanks with zero water exchange and addition of molasses and probiotics. Rev. Biol. Mari Ocean., 51(1), 61- 67.
Manan, H., Amin-Safwan, A., Kasan, N.A. & Ikhwanuddin, M. (2020). Effects of biofloc application on survival rate, growth performance and specific growth rate of pacific whiteleg shrimp, Penaeus vannamei Culture in Closed Hatchery System. Pak. J. Biol. Sci., 23(12), 1563-1571.
Miao, S., Sun, L., Bu, H., Zhu, J. & Chen, G. (2017). Effect of molasses addition at C:N ratio of 20:1 on the water quality and growth performance of giant freshwater prawn (Macrobrachium rosenbergii). Aquac. Inter., 25,1409-1425. Doi: 10.1007/s10499-017-0124-3.
Mook, W.T., Chakrabarti, M.H., Aroua, M.K., Khan, G.M.A., Ali, B.S., Islam, M.S. & Abu Hassan, M.A. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination. 285, 1-13.
Moss, S. (2002). Marine shrimp farming in the western hemisphere: Past problems, present solutions, and future visions. Rev. Fish. Scie., 10(3–4), 601–620. doi: 10.1080/20026491051820.
Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S. & Menasaveta, P. (2000). Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquac., 191, 271-288. Doi: 10.1016/S0044-8486(00)00440-3.
Sado, R.Y., Almeida, B. & Cyrino, J.E.P. (2008). Feeding dietary mannan oligosaccharides to juvenile nile tilapia, Oreochromis niloticus has no effect on haematological parameters and showed decreased feed consumption. J. World Aquac. Soci., 39, 821-826.
Tzuc, J.T., Escalante, D.R., Herrera, R.R., Cortes, G.G. & Ortiz, M.L.A. (2014). Microbiota from Litopenaeus vannamei: digestive tract microbial community of pacific white shrimp (Litopenaeus vannamei). Springer Plus., 3, 280, 1-10. Doi: 10.1186/2193-1801-3-280.
Wang, X., Daigger, G., de Vries, W., Kroeze, C., Yang, M., Ren, N-Q., Liu, J. & Butler, D. (2019). Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nat. Commun., 10(1), 2627.
Wang, R., Zhang, Y., Xia, W., Xin, W., Guo, C., Bowker, J. & Chen, Y. (2018). Effects of aquaculture on lakes in the Central Yangtze River Basin, China, I. water quality. N. Am. J. Aquac., 80, 369-378.
Widanarni, W., Putri, F.N. & Rahman. (2019). Growth performance of white shrimp Litopenaeus vannamei fed with Various dosages of prebiotic honey. IOP Conf. Series: Earth Enviro. Scie., 278, 11 p. Doi:10.1088/1755-1315/278/1/012079.
Xu, W.J. & Pan, L.Q. (2014). Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei: evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquac. Res., 45, 1842-1851.
Xu, W.J., Pan, L.Q., Sun, X.H. & Huang, J. (2012). Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquac. Res., 44, 1093-1102.
Yin, H., Yang, C., Jia, Y., Chen, H. & Gu, X. (2018). Dual removal of phosphate and ammonium from high concentrations of aquaculture wastewaters using an efficient two-stage infiltration system. Sci Total Envir., 635, 936-946.
Ziaei-Nejad, S., Rezaei, M.H., Takami, G.A., Lovett, D.L., Mirvaghefi, A.R. & Shakouri, M. (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquac., 252, 516 - 524. DOI:10.1016/J.AQUACULTURE.2005.07.021.
Section
Research Articles

How to Cite

Effect of different concentrations of molasses and forage with Bacillus lechniformis on the growth of Macrobrachium nipponense in vitro . (2023). Journal of Applied and Natural Science, 15(1), 422-428. https://doi.org/10.31018/jans.v15i1.4400