Pavithra Pidikiti Chavan Sanket Sudhakar Harkirat Singh Adesh Kumar Shweta Meshram


Plant viruses are transmitted through insects, mites, nematodes, and protists. Arthropods as vectors are used by 88% of plant viruses to move from one host to another. Insects are the most prevalent vectors, with aphids accounting for half of all insect-vectored viruses. Aphids have been meticulously developed to serve as vectors. Transforming virions into plant cells is facilitated bypiercing–sucking mouthparts that do not cause irreversible damage. With the ability to reproduce asexually, aphid populations can grow incredibly, amplifying disease epidemics and accelerating the spread of viruses over short and vast distances. Aphids significantly reduce crop productivity by spreading numerous plant viruses. Being obligate intracellular pathogens, viruses rely heavily on vectors to spread and survive. Aphids are responsible for the majority of economically significant plant virus transmission and cause heavy crop loss worldwide. Aphids feed on the plant as insect pathogens and carry plant pathogens such as Viruses. Either persistent circulation, non-circulation or not persistently, they spread viruses. The process of plant virus transmission by insects has changed over time and is significantly impacted by the biology and morphology of insects. Much research during the last century has offered an in-depth understanding of the molecular mechanisms underpinning virus-vector interactions. The present review discusses the molecular interaction of the virus–vector relationship by Aphids. This will provide a clue to the scientific community to successfully combat aphid infestation in agriculture.




Aphid, Molecular mechanism, Plant Virus, Transmission, Vector

Acharya, B. & Regmi, H. (2020). A Review on Status and Prospects of Legumes Viral Disease in Nepal. Journal of the Plant Protection Society, (6),40-52. DOI: https://doi.org/10.3126/jpps.v6i0.36470.
Agranovsky, A. (2021). Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells, 10(1), 90. DOI: 10.3390/cells10010090.
Anderson, P K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in ecology & evolution, 19(10), 535-544. DOI: 10.1016/j.tree.2004.07.021.
Andret-Link, P. & Fuchs, M. (2005). Transmission specificity of plant viruses by vectors. Journal of Plant Pathology, pp 153-165.
Aradottir, G. I. & Crespo-Herrera, L. (2021). Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: a review. Current Opinion in Insect Science, (45) 59-68. 10.1016/j.cois.2021.01.002
Armand, T., Korn, L., Pichon, E., Souquet, M., Barbet, M., Martin, J. L., ... & Jacquot, E. (2021). Efficiency and Persistence of Movento® Treatment against Myzus persicae and the Transmission of Aphid-Borne Viruses. Plants, 10(12), 2747. DOI: 10.3390/plants10122747.
Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D., ... & Torrance, L. (2013). Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol, (51), 177-201. DOI: 10.1146/annurev-phyto-082712-102346.
Chakrabarti, S. & Das, D. (2014). A new species and new records of aphids (Hemiptera) from Bhutan. Oriental Insects, 48(3-4), 327-336. DOI:10.1080/00305316.2015.1 013183.
Chakraborty, S., & Newton, A. C. (2011). Climate change, pla diseases and food security: an overview. Plant pathology, 60(1), 2-14. doi.org/10.1111/j.1365-3059.2010.02 411.x.
Chesnais, Q., Verdier, M., Burckbuchler, M., Brault, V., Pooggin, M. & Drucker, M. (2021). Cauliflower mosaic virus protein P6‐TAV plays a major role in alteration of aphid vector feeding behaviour but not performance on infected Arabidopsis. Molecular Plant Pathology, 22(8), 911-920. DOI: 10.1111/mpp.13069.
Choudhury, S., Larkin, P., Meinke, H., Hasanuzzaman, M. D., Johnson, P. & Zhou, M. (2019). Barley yellow dwarf virus infection affects physiology, morphology, grain yield and flour pasting properties of wheat. Crop and Pasture Science, 70(1), 16-25. doi.org/10.1071/CP18364.
Dewar, A. M. (2022). Why Using Biological Control Approaches Against Sugar Beet Aphid Pests Will Not Control Virus Yellows–a post-script. Outlooks on Pest Management, 33(2), 62-63. DOI: https://doi.org/10.1564/v33_apr_06.
Ding, Y., Xiao, Z., Chen, F., Yue, L., Wang, C., Fan, N. & Wang, Z. (2023). A mesoporous silica nanocarrier pesticide delivery system for loading acetamiprid: Effectively manage aphids and reduce plant pesticide residue. Science of The Total Environment, 863, 160900. DOI: 10.1016/j.scitotenv.2022.160900.
Dolja, V. V., Krupovic, M. & Koonin, E. V. (2020). Deep roots and splendid boughs of the global plant virome. Annual Review of Phytopathology, (58), 23-53. doi.org/10.1146/annurev-phyto-030320-041346.
Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G. & Smith, D. B. (2017). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Research., Jan 4;46(D1): D708-D717. DOI: 10.1093/nar/gkx932.
Fuchs, M., Almeyda, C. V., Al Rwahnih, M., Atallah, S. S., Cieniewicz, E. J., Farrar, K. & Welliver, R. (2021). Economic studies reinforce efforts to safeguard specialty crops in the United States. Plant disease, 105(1), 14-26. doi.org/10.1094/PDIS-05-20-1061-FE.
Gadhave, K. R., Gautam, S., Rasmussen, D. A. & Srinivasan, R. (2020). Aphid transmission of Potyvirus: the largest plant-infecting RNA virus genus. Viruses, 12(7), 773.
Gupta, K., Rishishwar, R. & Dasgupta, I. (2022). The interplay of plant hormonal pathways and geminiviral proteins: partners in disease development. Virus Genes, 58(1), 1-14. https://link.springer.com/article/10.1007/s11262-021-01881-6.
Ghosh, A., Chakrabarti, S., Mandal, B. & Krishna Kumar, N. K. (2017). Aphids as vectors of the plant viruses in India. In A century of plant virology in India, pp. 515-536. Springer, Singapore. DOI:10.1007/978-981-10-5672-7_23.
Ghosh, S., Kanakala, S., Lebedev, G., Kontsedalov, S., Silverman, D., Alon, T. & Ghanim, M. (2019). Transmission of a new polerovirus infecting pepper by the whitefly Bemisia tabaci. Journal of virology, 93(15), e00488-19. DOI: 10.1128/JVI.00488-19.
International Committee on Taxonomy of Viruses (ICTV) (2020). The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat Microbiol. 5(5):668‐674. PMID: 32341570 PMCID: PMC7186216.
Jayasinghe, W. H., Akhter, M. S., Nakahara, K. & Maruthi, M. N. (2022). Effect of aphid biology and morphology on plant virus transmission. Pest Management Science, 78(2), 416-427. doi.org/10.1002/ps.6629.
Jones, R. A., Sharman, M., Trębicki, P., Maina, S. & Congdon, B. S. (2021). Virus diseases of cereal and oilseed crops in Australia: current position and future challenges. Viruses, 13(10), 2051. DOI: 10.3390/v13102051.
Khalili, M., Candresse, T., Koloniuk, I., Safarova, D., Brans, Y., Faure, C. & Marais, A. (2022). The expanding menagerie of Prunus-infecting luteoviruses. Phytopathology, PHYTO-06-23, PMID: 35972890. DOI: 10.1094/PHYTO-06-22-0203-R.
Kondo, H., Botella, L. & Suzuki, N. (2022). Mycovirus diversity and evolution revealed/inferred from recent studies. Annual Review of Phytopathology, (60), 307-336. DOI: 10.1146/annurev-phyto-021621-122122.
Krueger, E. N., Beckett, R. J., Gray, S. M. & Miller, W. A. (2013). The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Frontiers in Microbiology, (4), 205. doi.org/10.3389/fmicb.2013.00205.
Kumari, I., Hussain, R., Sharma, S. & Ahmed, M. (2022). Microbial biopesticides for sustainable agricultural practices. In Biopesticides, pp. 301-317. Woodhead Publishing. doi.org/10.1016/B978-0-12-823355-9.00024-9.
LaTourrette, K., Holste, N. M. & Garcia-Ruiz, H. (2021). Polerovirus genomic variation. Virus Evolution, 7(2), veab102. DOI: 10.1093/ve/veab102.
Li, J., Gu, H., Liu, Y., Wei, S., Hu, G., Wang, X., & Ban, L. (2021). RNA-seq reveals plant virus composition and diversity in alfalfa, thrips, and aphids in Beijing, China. Archives of Virology, (166), 1711-1722.
Li, K. Z., Chao, K. R., Wang, X. L., Zhao, Y. L. & Duan, L. Q. (2021). Morphology of immature stages of Aphelinus maculatus Yasnosh (Hymenoptera: Aphelinidae) related to host aphid characteristics and larval taxonomic significance. Zoologischer Anzeiger, 292, 231-239. DOI: 10.1007/s00705-021-05067-1.
Miller, W. A. & Lozier, Z. (2022). Yellow dwarf viruses of cereals: taxonomy and molecular mechanisms. Annual Review of Phytopathology, (60), 121-141.
Ohlan, R. & Ohlan, A. (2022). Scholarly research in food security: A bibliometric analysis of global food security. Science & Technology Libraries, 1-17. doi.org/10.1080/0194262X.2022.2029728.
Patton, M. F., Bak, A., Sayre, J. M., Heck, M. L. & Casteel, C. L. (2020). A polerovirus, Potato leafroll virus, alters plant–vector interactions using three viral proteins. Plant, Cell & Environment, 43(2), 387-399. doi: 10.1111/pce.13684.
Rajarapu, S. P., Ullman, D. E., Uzest, M., Rotenberg, D., Ordaz, N. A & Whitfield, A. E. (2021). Plant–Virus–Vector Interactions. Virology, 227-287. ISBN 978-1-78945-023-1.
Rhee, S. J., Watt, L. G., Bravo, A. C., Murphy, A. M. & Carr, J. P. (2020). Effects of the cucumber mosaic virus 2a protein on aphid–plant interactions in Arabidopsis thaliana. Molecular Plant Pathology, 21(9), 1248-1254. doi: 10.1111/mpp.12975.
Ryckebusch, F., Sauvion, N., Granier, M., Roumagnac, P. & Peterschmitt, M. (2020). Alfalfa leaf curl virus is transmitted by Aphis craccivora in a highly specific circulative manner. Virology, (546), 98-108. doi.org/10.1016/j.virol.2020.04.004.
Sankarganesh, E. (2017). Insect biodiversity: The teeming millions-A review. Bull Environ Pharmacol Life Sci, (6), 101-5.
Sarwar, M., Shad, N. A., & Batool, R. (2020). Integrated management of vectored viral diseases of plants. In Applied Plant Virology (pp. 707-724). Academic Press. doi.org/10.1016/B978-0-12-818654-1.00050-5
Shi, X., Zhang, Z., Zhang, C., Zhou, X., Zhang, D. & Liu, Y. (2021). The molecular mechanism of efficient transmission of plant viruses in variable virus–vector–plant interactions. Horticultural Plant Journal, 7(6), 501-508. doi.org/10.1016/j.hpj.2021.04.006.
Singh, R. & Singh, G. (2021). Aphids. Polyphagous Pests of Crops, 105-182. DOI:10.1007/978-981-15-8075-8_3.
Singh, S., Awasthi, L. P. & Jangre, A. (2020). Transmission of plant viruses in fields through various vectors. In Applied Plant Virology, pp. 313-334. Academic Press. DOI:10.1016/B978-0-12-818654-1.00024-4.
Sõmera, M., Fargette, D., Hébrard, E., Sarmiento, C. & Consortium, I. R. (2021). ICTV virus taxonomy profile: Solemoviridae 2021. The Journal of General Virology, 102(12). doi: 10.1099/jgv.0.001707.
Tungadi, T., Donnelly, R., Qing, L., Iqbal, J., Murphy, A. M., Pate, A. E. & Carr, J. P. (2020). Cucumber mosaic virus 2b proteins inhibit virus‐induced aphid resistance in tobacco. Molecular plant pathology, 21(2), 250-257. DOI: 10.1111/mpp.12892.
Wang, X. W. & Blanc, S. (2021). Insect transmission of plant single-stranded DNA viruses. Annual Review of Entomology, (66), 389-405. doi.org/10.1146/annurev-ento-060920-094531.
Jayasinghe, W. H., Akhter, M. S., Nakahara, K. & Maruthi, M. N. (2022). Effect of aphid biology and morphology on plant virus transmission. Pest Management Science, 78(2), 416-427. doi.org/10.1002/ps.6629.
Yi, X. U. (2020). Aphids and their transmitted potato viruses: A continuous challenges in potato crops. Journal of Integrative Agriculture, 19(2), 367-375. doi.org/10.1016/S2095-3119(19)62842-X
Yoshida, N. (2020). Biological and genetic characterization of carrot red leaf virus and its associated virus/RNA isolated from carrots in Hokkaido. Japan. Plant Pathology, 69(7), 1379-1389. doi.org/10.1111/ppa.13202.
Research Articles

How to Cite

A review on molecular aspects of virus-vector relationship to the aphids: NA. (2023). Journal of Applied and Natural Science, 15(2), 616-623. https://doi.org/10.31018/jans.v15i2.4391