##plugins.themes.bootstrap3.article.main##

Amit Yogesh Kumar

Abstract

Different natural and anthropogenic activities have contributed to the prevalence of various environmental abiotic stressors that negatively affect agricultural yields worldwide. Also, more adverse impacts can be seen in legumes due to their susceptibility to abiotic stresses compared to cereals. The present study sought to understand cadmium's impact and its alleviation using ascobin on several seed protein properties of soybean (Glycine max). The total seed protein content, estimated using the semi-micro Kjeldahl method, was 36.25% without ascobin (control) at the highest cadmium (Cd) concentration, i.e., 30 mg per kg of soil. The protein content was restored to the highest level (43.75%) with 500 mg/L of ascobin at 10 mg Cd/kg of soil compared to the control without Cd. There was a noticeable decrease in total seed protein content in all sets under control conditions (i.e., without ascobin spray). Also, a negative correlation was found between increasing Cd concentration and the amount of free amino acids, quantified using Lee and Takahashi’s protocol in the seed proteins. The electrophoretic analysis using Gelanalyzer on SDS gels, as per Laemmli’s formulation, revealed that the 7S-Conglycinin protein subfraction was more affected than the 11S-Glycinin subfraction. The analysis revealed how Cd toxicity in soybean plants led to decreased seed protein content and altered proportion of two globulin sub-fractions (glycinin and β-conglycinin). Additionally, it affected the free amino acid content, potentially determining the seeds' nutritional value. However, foliar application of ascobin helped the plants to mitigate these Cd-induced changes and restore the seed quality.       

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Ascobin, Cadmium, SDS-gel electrophoresis, Seed proteins, Soybean

References
Abdelgawad, Z. A. (2014). Improving growth and yield of salt-stressed cowpea plants by exogenous application of ascobin. Life Science Journal, 11(11), 43-51.
Abdelgawad, K. F., Mhmoud, A. A. & Mohamed, H. F. (2018). Foliar spraying with some biostimulants improves growth, chemical constituents, and yield of head lettuce plant. Middle East Journal of Agriculture Research, 7, 1268-1277.
Ahsan, N., Lee, S. H., Lee, D. G., Lee, H., Lee, S. W., Bahk, J. D. & Lee, B. H. (2007). Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. Comptes rendus biologies, 330(10), 735-746. https://doi.org/10.1016/j.crvi.2007.08.001
Ali, S., Javed, H. U., Rehman, R. N. U., Sabir, I. A., Naeem, M. S., Siddiqui, M. Z., Saeed, D.A. & Nawaz, M. A. (2013). Foliar application of some macro and micro nutrients improves tomato growth, flowering and yield. International Journal of Biosciences, 3(10), 280-287.
Allahveran, A., Farokhzad, A., Asghari, M. & Sarkhosh, A. (2018). Foliar application of ascorbic and citric acids enhanced ‘Red Spur’apple fruit quality, bioactive compounds and antioxidant activity. Physiology and Molecular Biology of Plants, 24(3), 433-440. https://doi.org/10.1007/s12298-018-0514-7
Balestrasse, K. B., Benavides, M. P., Gallego, S. M. & Tomaro, M. L. (2003). Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Functional plant biology, 30(1), 57-64. https://doi.org/10.1071/FP02074
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Chaoui, A. & El Ferjani, E. (2013). β-Estradiol protects embryo growth from heavy-metal toxicity in germinating lentil seeds. Journal of Plant Growth Regulation, 32, 636-645. https://doi.org/10.1007/s00344-013-9332-x
Leitzmann, C. (2016). Characteristics and health benefits of phytochemicals. Complementary Medicine Research, 23(2), 69-74.
Dadrwal, B. K., Kakralya, B. L. & Bagdi, D. L. (2018). Alleviation of adverse effects of salt stress on physiological, biochemical and yield attributes in wheat by foliar treatment with Ascobin. Journal of Pharmacognosy and Phytochemistry, 7(4), 1786-1790.
Davis, B.J. (1964), Disk electrophoresis. II. Method and application to human serum proteins. The Annals of the New York Academy of Sciences, 12, 404-427. 10.1111/j.1749-6632.1964.tb14213.x
El-Maddah, E. I., El-Sodany, M. E. D. & Mahmoud, A. A. (2012). Effect of irrigation intervals, phosphorus levels and antioxidants of foliar ascorbic and citric acid (ASCOBIN) application on maize and wheat crops and some soil properties. Journal of Soil Sciences and Agricultural Engineering, 3(1), 63-93. https://dx.doi.org/10.21608/jssae.201 2.53321
El-Sherbeny, S. E., Khalil, M. Y. & Hussein, M. S. (2007). Growth and productivity of rue (Ruta graveolens) under different foliar fertilizers application. Journal of Applied Sciences Research, 3(5), 399-407.
Fageria, N. K., Filho, M. B., Moreira, A. & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of plant nutrition, 32(6), 1044-1064. https://doi.org/10.1080/01904160902872826
Faraz, A., Faizan, M., Sami, F., Siddiqui, H. & Hayat, S. (2020). Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. Journal of plant growth regulation, 39(2), 641-655. https://doi.org/10.1007/s00344-019-10007-0
Farooq, M., Hussain, M., Usman, M., Farooq, S., Alghamdi, S.S., Siddique & K.H.M. (2018). Impact of abiotic stresses on grain composition and quality in food legumes. Journal of Agricultural and Food Chemistry, 66, 8887-8897. https://doi.org/10.1021/acs.jafc.8b02924
Feng, Z., Ding, C., Li, W., Wang, D. & Cui, D. (2020). Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chemistry, 310, 125914. https://doi.org/10.1016/j.foodchem.2019.125914
Garcia, J. S., Gratão, P. L., Azevedo, R. A. & Arruda, M. A. Z. (2006). Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. Journal of agricultural and food chemistry, 54(22), 8623-8630. https://doi.org/10.1021/jf061593l
Ghosh, S., Batra, D., Kumar, Y. & Matta, N. K. (2022). Effects of heavy metals on seed protein fractions in chickpea, Cicer arietinum (L.). Journal of Applied and Natural Science, 14(1), 225-232. https://doi.org/10.31018/jans.v14i1.3332
Gianazza, E., Wait, R., Sozzi, A., Regondi, S., Saco, D., Labra, M., & Agradi, E. (2007). Growth and protein profile changes in Lepidium sativum L. plantlets exposed to cadmium. Environmental and Experimental Botany, 59(2), 179-187. https://doi.org/10.1016/j.envexpbot.2005.12.005
Hossain, Z., Hajika, M. & Komatsu, S. (2012). Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids, 43, 2393-2416. https://doi.org/10.1007/s00726-012-1319-6
Jaouani, K., Karmous, I., Ostrowski, M., El Ferjani, E., Jakubowska, A. & Chaoui, A. (2018). Cadmium effects on embryo growth of pea seeds during germination: investigation of the mechanisms of interference of the heavy metal with protein mobilization-related factors. Journal of plant physiology, 226, 64-76. https://doi.org/10.1016/j.jplph.2018.02.009
Juhász, A., Belova, T., Florides, C. G., Maulis, C., Fischer, I., Gell, G., Birinyi, Z., Ong, J., Keeble-Gagnère, G., Maharajan, A., Ma, W. & Olsen, O. A. (2018). Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Science advances, 4(8), eaar8602. https://doi.org/10.1126/sciadv.aar8602
Khan, A. & Ashraf, M. (2008). Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and experimental botany, 63(1-3), 224-231. https://doi.org/10.1016/j.envexpbot.2007.10.018
Khan, T., Mazid, M. & Mohammad, F. (2011). A review of ascorbic acid potentialities against oxidative stress induced in plants. Journal of agrobiology, 28(2), 97.
Kinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A. & Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific reports, 10(1), 8434. https://doi.org/10.1038/s41598-020-65359-5
Klubicova, K., Danchenko, M., Skultety, L., Berezhna, V. V., Uvackova, L., Rashydov, N. M. & Hajduch, M. (2012). Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism. PLoS One, 7(10), e48169. https://doi.org/10.1371/journal.pone.0048169
Krishnan, H. (2002). Evidence for accumulation of the β-subunit of β-conglycinin in soybean [Glycine max (L) Merr.] embryonic axes. Plant cell reports, 20(9), 869-875. https://doi.org/10.1007/s00299-001-0400-5
Kuchlan, M. K., Kuchlan, P. & Husain, S. M. (2017). Effect of foliar application of growth activator, promoter and antioxidant on seed quality of soybean. Legume Research, 40 (2), 313-318.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
Lee, Y. P. & Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical biochemistry, 14(1), 71-77. https://doi.org/10.1016/0003-2697(66)90057-1
Lin, Y. F. & Aarts, M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and molecular life sciences, 69(19), 3187-3206. https://doi.org/10.1007/s00018-012-1089-z
Liu, S., Zhou, R., Tian, S. & Gai, J. (2007). A study on subunit groups of soybean protein extracts under SDS-PAGE. Journal of the American Oil Chemists' Society, 84(9), 793-801. https://doi.org/10.1007/s11746-007-1111-z
Luo, M., Zhao, Y., Wang, Y., Shi, Z., Zhang, P., Zhang, Y., Song, W. & Zhao, J. (2018). Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms. Journal of proteome research, 17(1), 141-153. https://doi.org/10.1021/acs.jproteome.7b00455
Mao, F., Nan, G., Cao, M., Gao, Y., Guo, L., Meng, X. & Yang, G. (2018). The metal distribution and the change of physiological and biochemical process in soybean and mung bean plants under heavy metal stress. International journal of phytoremediation, 20(11), 1113-1120. https://doi.org/10.1080/15226514.2017.1365346
Mehta, S. K. & Gaur, J. P. (1999). Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. The New Phytologist, 143(2), 253-259. doi:10.1046/j.1469-8137.1999.00447.x
Nagy-Réder, D., Birinyi, Z., Rakszegi, M., Békés, F. & Gell, G. (2022). The effect of abiotic stresses on the protein composition of four hungarian wheat varieties. Plants, 11(1), 1.
Ornstein, L. (1964). Disc electrophoresis. I. Background and Theory. Annals of the New York Academy of Sciences, 121, 321-349. 10.1111/j.1749-6632.1964.tb14207.x
Riaz, M. N. (2005). Soy applications in food. CRC press.
Sadak, M. S. & Orabi, S. A. (2015). Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of ChemTech Research, 8, 333-345.
Sarry, J. E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J.B., Vailhen, D., Amekraz, B. & Bourguignon, J. (2006). The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 6(7), 2180-2198. https://doi.org/10.1002/pmic.200500543
Sheteawi, S. A. (2007). Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. International Journal of Agriculture and Biology (Pakistan), 9(3), 473-478.
Singh, G. S. (Ed.). (2010). The soybean: botany, production and uses. CABI.Riaz, M. N. (2005). Soy applications in food. CRC press.
Singh, N. P. & Matta, N. K. (2008). Variation studies on seed storage proteins and phylogenetics of the genus Cucumis. Plant Systematics and Evolution, 275(3), 209-218. https://doi.org/10.1007/s00606-008-0063-6
Tahjib-Ul-Arif, M.,   Sohag, A. A. M.,  Mostofa, M. G., Pol ash, Mahamud,  M.A.S.A ..(2021).Comparative effects of ascobin and glutathione on copper homeostasis and oxidative stress metabolism in mitigation of copper toxicity in rice,Plant Biology ,23, 162-169
Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T. & Christen, P. (2014). Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4(1), 252-267. doi.org/10.3390/biom4010252
Teixeira, W. F., Fagan, E. B., Soares, L. H., Umburanas, R. C., Reichardt, K. & Neto, D. D. (2017). Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in plant science, 8, 327. https://doi.org/10.3389/fpls.2017.00327
Tewari, S. & Arora, N. K. (2016). Soybean production under flooding stress and its mitigation using plant growth-promoting microbes. In Environmental stresses in soybean production (pp. 23-40). Academic Press. https://doi.org/10.1016/B978-0-12-801535-3.00002-4
Thanh, V. H. & Shibasaki, K. (1976). Major proteins of soybean seeds. A straightforward fractionation and their characterization. Journal of Agricultural and Food Chemistry, 24(6), 1117-1121. https://doi.org/10.1021/jf60208a030
Thanh, V. H. & Shibasaki, K. (1977). Beta-conglycinin from soybean proteins. Isolation and immunological and physicochemical properties of the monomeric forms. Biochimica et Biophysica Acta (BBA)-Protein Structure, 490(2), 370-384. https://doi.org/10.1016/0005-2795(77)90012-5
Vogel, A. I. (1961). Text-book of quantitative inorganic analysis including elementary instrumental analysis.
Wani, P. A., Khan, M. S. & Zaidi, A. (2007). Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Australian Journal of Experimental Agriculture, 47(6), 712-720. https://doi.org/10.1071/EA05369
Weber, K. & Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry, 244(16), 4406-4412. https://doi.org/10.1016/S0021-9258(18)94333-4
Yaklich, R. W. (2001). β-Conglycinin and glycinin in high-protein soybean seeds. Journal of Agricultural and Food Chemistry, 49(2), 729-735. https://doi.org/10.1021/jf001110s
Zhang, K., Wang, G., Bao, M., Wang, L. & Xie, X. (2019). Exogenous application of ascorbic acid mitigates cadmium toxicity and uptake in Maize (Zea mays L.). Environmental Science and Pollution Research, 26(19), 19261-19271. https://doi.org/10.1007/s11356-019-05265-0
Zhou, Z., Wei, C., Liu, H., Jiao, Q., Li, G., Zhang, J., Zhang, B., Jin, W., Lin, D., Chen, G. & Yang, S. (2022). Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity. Environmental Science and Pollution Research, 29(15), 21739-21750. https://doi.org/10.10 07/s11356-021-17371-z
Section
Research Articles

How to Cite

Effects of foliar applications of ascobin on seed protein accumulation in soybean (Glycine max (L.) Merrill) JS 1215 grown under cadmium stress. (2023). Journal of Applied and Natural Science, 15(2), 582-593. https://doi.org/10.31018/jans.v15i2.4387