Article Main

Pooja Singh Vikram Kumar https://orcid.org/0000-0002-1733-3667 Asha Sharma https://orcid.org/0000-0002-8011-6614

Abstract

Silicon (Si) is the utmost element of the earth's crust involved in various plant processes. Despite being a non-essential element of the plant, its role in plant tolerance is appreciable. The interaction of Si with the plant cell wall provides structural and mechanical strength to the plants. This review article discusses the different forms of silica (simple to complex), the nature of Si, and its interaction with plant cell wall components after being taken up by plants. Ligands of plant cell wall like hemicellulose, pectin, lignin, cellulose, callose, and mixed-linked glucans (MLG) are the possible linker, which helps the Si in crosslinking with the plant cell wall. This review also incorporates the interrelation of Si with different cell wall components, the role of Si-cell wall complexes in different stress alleviation, and enhancing stress resistance in plants. Accumulation of Si after crosslinking with the cell wall provides rigidity and stability to the plant wall and enhances mechanical strength. Many studies have been conducted on the Si role in different stress alleviation, but little knowledge is available on how plants react when Si is taken up, how Si interacts with the plant cells, how Si accumulation is enhanced by the plant itself, how the possible ligands help Si in bonding with the cell wall. This study helps to understand the relationship of cell wall components with Si and to think about the precise bonding patterns between them.

Article Details

Article Details

Keywords

Cell wall, Components, Interaction, Ligands, Silicon, Stress

References
Alexandre, A., Basile-Doelsch, I., Delhaye, T., Borshneck, D., Mazur, J. C., Reyerson, P. & Santos, G. M. (2015). New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results. Biogeosciences, 12(3), 863-873. https://doi.org/10.5194/bg-12-863-2015
Bathoova, M., Bokor, B., Soukup, M., Lux, A. & Martinka, M. (2018). Silicon‐mediated cell wall modifications of sorghum root exodermis and suppression of invasion by fungus Alternaria alternata. Plant Pathology, 67(9), 1891-1900. https://doi.org/10.1111/ppa.12906
Bhardwaj, S. & Kapoor, D. (2021). Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiology and Biochemistry,166, 1044-1053. doi:10.1016/j.plaphy.2021.07.005.
Bidhendi, A. J. & Geitmann, A. (2015). Relating the mechanics of the primary plant cell wall to morphogenesis. Journal of Experimental Botany, 67(2), 449-461. https://doi.org/10.1093/jxb/erv535
Bityutskii, N., Pavlovic, J., Yakkonen, K., Maksimović, V. & Nikolic, M. (2014). Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. Plant Physiology and Biochemistry, 74, 205-211. https://doi.org/10.1016/j.plaphy.2013.11.015
Britannica, T. Editors of Encyclopaedia (2021). Silicon. Encyclopedia Britannica. https://www.brita nnica.com/science/silicon
Cai, K., Gao, D., Chen, J. & Luo, S. (2009). Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signaling and Behavior, 4(1), 1-3. doi:10.4161/psb.4.1.7280
Charrier, B., Rabillé, H. & Billoud, B. (2019). Gazing at cell wall expansion under a golden light. Trends in Plant Science, 24(2), 130-141. https://doi.org/10.1016/j.tplants.20 18.10.013
Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6(11), 850-861. 10.1038/nrm1746
Cui, J., Li, Y., Jin, Q. & Li, F. (2020). Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science: Nano, 7(1), 162-171. https://doi.org/10.1039/C9EN01035A
Culebras, M., Barrett, A., Pishnamazi, M., Walker, G. M. & Collins, M. N. (2021). Wood-derived hydrogels as a platform for drug-release systems. ACS Sustainable Chemistry and Engineering, 9(6), 2515-2522. https://doi.org/10.10 21/acssuschemeng.0c08022
Cuong, T. X., Ullah, H., Datta, A. & Hanh, T. C. (2017). Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science, 24(5), 283-290. https://doi.org/10.1016/j.rsci.201 7.06.002
Currie, H. A. & Perry, C. C. (2007). Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 100(7), 1383-1389. https://doi.org/10.1093/aob/mc m247
Currie, H. A. & Perry, C. C. (2009). Chemical evidence for intrinsic ‘Si’within Equisetum cell walls. Phytochemistry, 70(17-18), 2089-2095. https://doi.org/10.1016/j.phytochem.2009.07.039
Delplace, G., Schreck, E., Pokrovsky, O. S., Zouiten, C., Blondet, I., Darrozes, J. & Viers, J. (2020). Accumulation of heavy metals in phytoliths from reeds growing on mining environments in Southern Europe. Science of The Total Environment, 712, 135595. https://doi.org/10.1016/j.scitotenv.2019.135595
Deshmukh, R. K., Vivancos, J., Ramakrishnan, G., Guérin, V., Carpentier, G., Sonah, H., Labbé, C., Isenring, P., Belzile, F. J. & Bélanger, R. R. (2015). A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. The Plant Journal, 83(3), 489-500. doi:10.1111/tpj.12904 
Detmann, K. C., Araújo, W. L., Martins, S. C., Sanglard, L. M., Reis, J. V., Detmann, E., Rodrigues, F.Á., Nunes‐Nesi, A., Fernie, A.R. & DaMatta, F. M. (2012). Silicon nutrition increases grain yield, which, in turn, exerts a feed‐forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytologist, 196(3), 752-762. https://doi.org/10.1111/j.1469-8137.2012.04299.x
Deus, A. C. F., de Mello Prado, R., de Cássia Félix Alvarez, R., de Oliveira, R. L. L. & Felisberto, G. (2020). Role of silicon and salicylic acid in the mitigation of nitrogen deficiency stress in rice plants. Silicon, 12, 997-1005. https://doi.org/10.1007/s12633-019-00195-5
Dove P.M. (1995). Kinetic and thermodynamic controls on silica reactivity in weathering environments. In Chemical Weathering Rates of Silicate Minerals. Edited by White, A.F. and Brantley, S.L. Vol. 31. pp. 235–290. De Gruyter, Boston. https://doi.org/10.1515/9781501509650-008
Dragišić Maksimović, J., Bogdanović, J., Maksimović, V. & Nikolic, M. (2007). Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. Journal of Plant Nutrition and Soil Science, 170(6), 739-744. https://doi.org/10.1002/jpln.200700101
Duval, J. F. & van Leeuwen, H. P. (2012). Rates of ionic reactions with charged nanoparticles in aqueous media. The Journal of Physical Chemistry A, 116(25), 6443-6451. https://doi.org/10.1021/jp209488v
Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences, 91(1), 11-17. https://doi.org/10.1073/pnas.91.1.11
Epstein, E. (2009). Silicon: its manifold roles in plants. Annals of Applied Biology, 155(2), 155-160. https://doi.org/10.1111/j.1744-7348.2009.00343.x
Fang, J. Y. & Ma, X. L. (2006). In vitro simulation studies of silica deposition induced by lignin from rice. Journal of Zhejiang University Science B, 7(4), 267-271. doi: 10.1631/jzus.2006.B0267
Farooq, M. A. & Dietz, K. J. (2015). Silicon as versatile player in plant and human biology: overlooked and poorly understood. Frontiers in Plant Science, 6, 994. https://doi.org/10.3389/fpls.2015.00994
Fleck, A. T., Schulze, S., Hinrichs, M., Specht, A., Wassmann, F., Schreiber, L. & Schenk, M. K. (2015). Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS One, 10(9), e0138555. https://doi.org/10.1371/journal.pone.0138555
Fortunato, A. A., da Silva, W. L. & Rodrigues, F. Á. (2014). Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Phytopathology, 104(6), 597-603. https://doi.org/10.1094/PHYTO-07-13-0203-R
Frazão, J. J., Prado, R. D. M., de Souza Júnior, J. P. & Rossatto, D. R. (2020). Silicon changes C: N: P stoichiometry of sugarcane and its consequences for photosynthesis, biomass partitioning and plant growth. Scientific Reports, 10(1), 12492. https://doi.org/10.1038/s41598-020-69310-6
Fry, S. C., Nesselrode, B. H., Miller, J. G. & Mewburn, B. R. (2008). Mixed‐linkage (1→ 3, 1→ 4)‐β‐d‐glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytologist, 179(1), 104-115. https://doi.org/10.1111/j.1469-8137.2008.02435.x
Galatis, B. & Apostolakos, P. (2010). A new callose function: involvement in differentiation and function of fern stomatal complexes. Plant Signaling and Behavior, 5(11), 1359-1364. https://doi.org/10.4161/psb.5.11.12959
Gallagher, K. L., Alfonso-Garcia, A., Sanchez, J., Potma, E. O. & Santos, G. M. (2015). Plant growth conditions alter phytolith carbon. Frontiers in Plant Science, 6, 753. https://doi.org/10.3389/fpls.2015.00753
Gaur, S., Kumar, J., Kumar, D., Chauhan, D. K., Prasad, S. M. & Srivastava, P. K. (2020). Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicology and Environmental Safety, 202, 110885. https://doi.org/10.1016/j.ecoenv.2020.110885
Gierlinger, N., Sapei, L. & Paris, O. (2008). Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging. Planta, 227(5), 969-980. DOI 10.1007/s00425-007-0671-3
Głazowska, S., Baldwin, L., Mravec, J., Bukh, C., Hansen, T. H., Jensen, M. M., Fangel, J.U., Willats, W.G., Glasius, M., Felby, C. & Schjoerring, J. K. (2018). The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon. Biotechnology for Biofuels, 11, 1-18. https://doi.org/10.1186/s13068-018-1166-0
Greger, M., Kabir, A. H., Landberg, T., Maity, P. J. & Lindberg, S. (2016). Silicate reduces cadmium uptake into cells of wheat. Environmental Pollution, 211, 90-97. https://doi.org/10.1016/j.envpol.2015.12.027
Guerriero, G., Hausman, J. F. & Legay, S. (2016). Silicon and the plant extracellular matrix. Frontiers in Plant Science, 7, 463.  https://doi.org/10.3389/fpls.2016.00463
Guerriero, G., Stokes, I. & Exley, C. (2018). Is callose required for silicification in plants?. Biology Letters, 14(10), 20180338. https://doi.org/10.1098/rsbl.2018.0338
Harrison, C. C. (1996). Evidence for intramineral macromolecules containing protein from plant silicas. Phytochemistry, 41(1), 37-42. https://doi.org/10.10 16/0031-9422(95)00576-5
He, C., Ma, J. & Wang, L. (2015). A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytologist, 206(3), 1051-1062. https://doi.org/10.1111/nph.13282
Iler K.R. (1979). The Chemistry of Silica: Solubility, polymerization, colloid and surface properties and biochemistry of silica. John Wiley and Sons Ltd., New York.
Inanaga, S. & Okasaka, A. (1995). Calcium and silicon binding compounds in cell walls of rice shoots. Soil Science and Plant Nutrition, 41(1), 103-110. https://doi.org/10.1080/00380768.1995.10419563
Inanaga, S., Okasaka, A. & Tanaka, S. (1995). Does silicon exist in association with organic compounds in rice plant?. Soil Science and Plant Nutrition, 41(1), 111-117. https://doi.org/10.1080/00380768.1995.10419564
Kauss, H., Seehaus, K., Franke, R., Gilbert, S., Dietrich, R. A. & Kröger, N. (2003). Silica deposition by a strongly cationic proline‐rich protein from systemically resistant cucumber plants. The Plant Journal, 33(1), 87-95. https://doi.org/10.1046/j.1365-313X.2003.01606.x
Kido, N., Yokoyama, R., Yamamoto, T., Furukawa, J., Iwai, H., Satoh, S. & Nishitani, K. (2015). The matrix polysaccharide (1; 3, 1; 4)-β-D-glucan is involved in silicon-dependent strengthening of rice cell wall. Plant and Cell Physiology, 56(2), 268-276. https://doi.org/10.1093/pcp/pcu162
Kim, S. J. & Brandizzi, F. (2021). Advances in cell wall matrix research with a focus on mixed-linkage glucan. Plant and Cell Physiology, 62(12), 1839-1846. https://doi.org/10.1093/pcp/pcab106
Kinrade, S. D., Del Nin, J. W., Schach, A. S., Sloan, T. A., Wilson, K. L. & Knight, C. T. (1999). Stable five-and six-coordinated silicate anions in aqueous solution. Science, 285(5433), 1542-1545. DOI: 10.1126/science.285.5433.1542
Klotzbücher, T., Klotzbücher, A., Kaiser, K., Vetterlein, D., Jahn, R. & Mikutta, R. (2018). Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Global Change Biology, 24(1), e183-e189. https://doi.org/10.1111/gcb.13845
Kobayashi, M., Matoh, T. & Azuma, J. I. (1996). Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiology, 110(3), 1017-1020. https://doi.org/10.1104/pp.11 0.3.1017
Kovács, S., Kutasy, E. & Csajbók, J. (2022). The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. Plants, 11(9), 1223. https://doi.org/10.3390/plants11091223
Kumar, S., Adiram-Filiba, N., Blum, S., Sanchez-Lopez, J. A., Tzfadia, O., Omid, A., Volpin, H., Heifetz, Y., Goobes, G. & Elbaum, R. (2020). Siliplant1 protein precipitates silica in sorghum silica cells. Journal of Experimental Botany, 71(21), 6830-6843. https://doi.org/10.1093/jxb/eraa258
Kumar, S., Milstein, Y., Brami, Y., Elbaum, M. & Elbaum, R. (2017). Mechanism of silica deposition in sorghum silica cells. New Phytologist, 213(2), 791-798. https://doi.org/10.1111/nph.14173
Laîné, P., Haddad, C., Arkoun, M., Yvin, J. C. & Etienne, P. (2019). Silicon promotes agronomic performance in Brassica napus cultivated under field conditions with two nitrogen fertilizer inputs. Plants, 8(5), 137. https://doi.org/10.3390/plants8050137
Lambert, J. B., Gurusamy-Thangavelu, S. A. & Ma, K. (2010). The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science, 327(5968), 984-986. DOI: 10.1126/science.1182669
Lavinsky, A. O., Detmann, K. C., Reis, J. V., Ávila, R. T., Sanglard, M. L., Pereira, L. F., Sanglard, L.M., Rodrigues, F.A., Araújo, W.L. & DaMatta, F. M. (2016). Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. Journal of Plant Physiology, 206, 125-132. https://doi.org/10.1016/j.jplph.2016.09.010
Law, C. & Exley, C. (2011). New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biology, 11(1), 1-9. https://doi.org/10.1186/1471-2229-11-112
Leroux, O., Leroux, F., Mastroberti, A. A., Santos-Silva, F., Van Loo, D., Bagniewska-Zadworna, A., Van Hoorebeke, L., Bals, S., Popper, Z.A. & de Araujo Mariath, J. E. (2013). Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae. Planta, 237(6), 1453-1464. doi: 10.1007/s00425-013-1856-6
Li, C., Sun, Y., Zhao, D., Feng, L. & Tao, J. (2016). Relationship between inflorescence stem mechanical strength and some elements contents of herbaceous peony (Paeonia lactiflora Pall.). Southwest China Journal of Agricultural Sciences, 29(5), 1214-1218.
Liu, J., Ma, J., He, C., Li, X., Zhang, W., Xu, F., Lin, Y. & Wang, L. (2013). Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall‐bound form of silicon. New Phytologist, 200(3), 691-699. https://doi.org/10.1111/nph.12494
Liu, L., Song, Z., Li, Q., Ellam, R. M., Tang, J., Wang, Y., Sarkar, B. & Wang, H. (2022). Accumulation and partitioning of toxic trace metal (loid) s in phytoliths of wheat grown in a multi-element contaminated soil. Environmental Pollution, 294, 118645. https://doi.org/10.1016/j.envpol.2021.118645
Ma, J., Cai, H., He, C., Zhang, W. & Wang, L. (2015). A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 206, 1063–1074. doi: 10.1111/nph.13276. https://doi.org/10.1111/nph.13276
Ma, J., Sheng, H., Li, X. & Wang, L. (2016). iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. Plant Physiology and Biochemistry, 104, 71-80. https://doi.org/10.1016/j.plaphy.2016.03.024
Ma, J., Zhang, X. & Wang, L. (2017). Synergistic effects between [Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice (Oryza sativa) cells. Planta, 245, 965-976. https://doi.org/10.1007/s00425-017-2655-2
Ma, J., Zhang, X., Zhang, W. & Wang, L. (2016). Multifunctionality of silicified nanoshells at cell interfaces of Oryza sativa. ACS Sustainable Chemistry & Engineering, 4(12), 6792-6799. https://doi.org/10.1021/acssusche meng.6b01736
Mabagala, F. S., Geng, Y. H., Cao, G. J., Wang, L. C., Wang, M. & Zhang, M. L. (2020). Effect of silicon on crop yield, and nitrogen use efficiency applied under straw return treatments. Applied Ecology and Environmental Research, 18, 5577-5590. http://dx.doi.org/10.15666/aeer/1804_55775590
Majeed Zargar, S., Ahmad Macha, M., Nazir, M., Kumar Agrawal, G. & Rakwal, R. (2012). Silicon: A Multitalented Micronutrient in OMICS Perspective–An Update. Current Proteomics, 9(4), 245-254. doi: 10.2174/157016412 805219152
Mandlik, R., Thakral, V., Raturi, G., Shinde, S., Nikolić, M., Tripathi, D. K., Sonah, H. & Deshmukh, R. (2020). Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany, 71(21), 6703-6718. https://doi.org/10.1093/jxb/eraa301
Matichenkov V. & Bocharnikova E. (2001). The relationship between silicon and soil physical and chemical properties. In Studies in Plant Science. Edited by Datnoff, L.E., Snyder, G.H. and Korndörfer G.H. Vol. 8. pp. 209–219. Elsevier, Amsterdam. https://doi.org/10.1016/S0928-3420(01)80017-3
Mera, M. U. & Beveridge, T. J. (1993). Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. Journal of Bacteriology, 175(7), 1936-1945. https://doi.org/10.1128/jb.175.7.1936-1945.1993
Mir, R. A., Bhat, K. A., Shah, A. A. & Zargar, S. M. (2020). Role of Silicon in Abiotic Stress Tolerance of Plants. In Improving abiotic stress tolerance in plants (pp. 271-290). CRC Press. 271–290. doi: 10.1201/9780429027505-15
Miwa, K., Kamiya, T. & Fujiwara, T. (2009). Homeostasis of the structurally important micronutrients, B and Si. Current Opinion in Plant Biology, 12(3), 307-311. https://doi.org/10.1016/j.pbi.2009.04.007
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277. https://doi.org/10.1016/j.pbi.2008.03.006
Najihah, N. I., Hanafi, M. M., Idris, A. S. & Hakim, M. A. (2015). Silicon treatment in oil palms confers resistance to basal stem rot disease caused by Ganoderma boninense. Crop Protection, 67, 151-159. https://doi.org/10.1016/j.cropro.2014.10.004
Neu, S., Schaller, J. & Dudel, E. G. (2017). Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Scientific Reports, 7(1), 40829. https://doi.org/10.1038/srep40829
Nguyen, M. N., Dam, T. T., Nguyen, A. T., Nguyen, A. M., Nguyen, L. N., Duong, L. T., Dang, Q.T. & Tran, T. T. (2021). Arsenic in rice straw phytoliths: Encapsulation and release properties. Applied Geochemistry, 127, 104907. https://doi.org/10.1016/j.apgeochem.2021.104907
Nguyen, T. N., Nguyen, M. N., McNamara, M., Dultz, S., Meharg, A. & Nguyen, V. T. (2019). Encapsulation of lead in rice phytoliths as a possible pollutant source in paddy soils. Environmental and Experimental Botany, 162, 58-66. https://doi.org/10.1016/j.envexpbot.2019.02.009
Nwugo, C. C. & Huerta, A. J. (2011). The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. Journal of Proteome Research, 10(2), 518-528. https://doi.org/10.1021/pr100716h
O'Neill, M. A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A. G. & Albersheim, P. (1996). Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester: in vitro conditions for the formation and hydrolysis of the dimer. Journal of Biological Chemistry, 271(37), 22923-22930. https://doi.org/10.1074/jbc.271.37.22923
Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E. A. & Nikolic, M. (2021). Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science, 12, 697592. https://doi.org/10.3389/fpls.2021.697592
Peaucelle, A., Braybrook, S. & Höfte, H. (2012). Cell wall mechanics and growth control in plants: the role of pectins revisited. Frontiers in Plant Science, 3, 121. https://doi.org/10.3389/fpls.2012.00121
Perry, C. C. & Keeling-Tucker, T. (1998). Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chemical Communications, (23), 2587-2588.
Perry, C. C. & Keeling-Tucker, T. (2003). Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia. Colloid and Polymer Science, 281(7), 652-664. DOI 10.1007/s00396-002-0816-7
Perry, C. C. & Lu, Y. (1992). Preparation of silicas from silicon complexes: role of cellulose in polymerisation and aggregation control. Journal of the Chemical Society, Faraday Transactions, 88(19), 2915-2921. doi: 10.1039/FT9928802915
Piperno, D. R., Holst, I., Wessel-Beaver, L. & Andres, T. C. (2002). Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proceedings of the National Academy of Sciences, 99(16), 10923-10928. doi: 10.1073/pnas.152275499
Pooja, Vikram, Sharma, J., Verma, S. & Sharma, A. (2022). Importance of silicon in combating a variety of stresses in plants: A review. Journal of Applied and Natural Science, 14(2), 607-630. https://doi.org/10.31018/jans.v14i2.3426
Prychid, C. J., Rudall, P. J. & Gregory, M. (2003). Systematics and biology of silica bodies in monocotyledons. The Botanical Review, 69(4), 377-440.
Pu, J., Ma, J., Li, J., Wang, S. & Zhang, W. (2023). Organosilicon and inorganic silica inhibit polystyrene nanoparticles uptake in rice. Journal of Hazardous Materials, 442, 130012. https://doi.org/10.1016/j.jhazmat.2022.130012
Pu, J., Wang, L., Zhang, W., Ma, J., Zhang, X. & Putnis, C. V. (2021). Organically-bound silicon enhances resistance to enzymatic degradation and nanomechanical properties of rice plant cell walls. Carbohydrate Polymers, 266, 118057. https://doi.org/10.1016/j.carbpol.2021.118057
Puppe, D. & Sommer, M. (2018). Experiments, uptake mechanisms, and functioning of silicon foliar fertilization—A review focusing on maize, rice, and wheat. Advances in Agronomy, 152, 1-49. https://doi.org/10.1016/bs.agron.2018.07.003
Qi, L., Li, F. Y., Huang, Z., Jiang, P., Baoyin, T. & Wang, H. (2017). Phytolith-occluded organic carbon as a mechanism for long-term carbon sequestration in a typical steppe: The predominant role of belowground productivity. Science of the Total Environment, 577, 413-417. https://doi.org/10.1016/j.scitotenv.2016.10.206
Radotić, K., Djikanović, D., Kalauzi, A., Tanasijević, G., Maksimović, V. & Maksimović, J. D. (2022). Influence of silicon on polymerization process during lignin synthesis. Implications for cell wall properties. International Journal of Biological Macromolecules, 198, 168-174. https://doi.org/10.1016/j.ijbiomac.2021.12.143
Ranathunge, K., Schreiber, L. & Franke, R. (2011). Suberin research in the genomics era—new interest for an old polymer. Plant Science, 180(3), 399-413. https://doi.org/10.1016/j.plantsci.2010.11.003
Ren, C., Qi, Y., Huang, G., Yao, S., You, J. & Hu, H. (2020). Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stresses. Journal of Environmental Sciences, 88, 209-216. https://doi.org/10.1016/j.jes.2019.08.012
Riaz, M., Kamran, M., Rizwan, M., Ali, S., Parveen, A., Malik, Z. & Wang, X. (2021). Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 273, 129690. https://doi.org/10.1016/j.chemosphere.2021.
Riaz, M., Wu, X., Yan, L., Hussain, S., Aziz, O., Shah, A. & Jiang, C. (2018). Boron supply alleviates Al-induced inhibition of root elongation and physiological characteristics in rapeseed (Brassica napus L.). Journal of Plant Interactions, 13(1), 270-276. https://doi.org/10.1080/174291 45.2018.1474391
Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. (2004). Borate minerals stabilize ribose. Science, 303(5655), 196-196. DOI: 10.1126/science.1092464
Richmond, K. E. & Sussman, M. (2003). Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology, 6(3), 268-272. https://doi.org/10.1016/S1369-5266(03)00041-4
Sahebi, M., Hanafi, M. M., Abdullah, S. N. A., Rafii, M. Y., Azizi, P., Nejat, N. & Idris, A. S. (2014). Isolation and expression analysis of novel silicon absorption gene from roots of mangrove (Rhizophora apiculata) via suppression subtractive hybridization. BioMed Research International. doi: 10.1155/2014/971985
Sahebi, M., Hanafi, M. M., Akmar, A. S. N., Rafii, M. Y., Azizi, P. & Idris, A. S. (2015). Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove. Gene, 556(2), 170-181. doi: 10.1016/j.gene.20 14.11.05
Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F. F., Nurul Mayzaitul Azwa, J. & Shabanimofrad, M. (2015a). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International. https://doi.org/10.1155/2015/396010
Sanglard, L. M., Detmann, K. C., Martins, S. C., Teixeira, R. A., Pereira, L. F., Sanglard, M. L., Fernie, A.R., Araújo, W.L. & DaMatta, F. M. (2016). The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environmental and Experimental Botany, 123, 22-36. https://doi.org/10.1016/j.envexpbot.2015.11.004
Schaller, J., Brackhage, C., Gessner, M. O., Bäuker, E. & Gert Dudel, E. (2012). Silicon supply modifies C: N: P stoichiometry and growth of Phragmites australis. Plant Biology, 14(2), 392-396. https://doi.org/10.1111/j.1438-8677.2011.00537.x
Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R. & Sommer, M. (2021). Silicon cycling in soils revisited. Plants, 10(2), 295. https://doi.org/10.3390/plants100 20295
Schwarz, K. (1973). A bound form of silicon in glycosaminoglycans and polyuronides. Proceedings of the National Academy of Sciences, 70(5), 1608-1612. https://doi.org/10.1073/pnas.70.5.160
Sheng, H. & Chen, S. (2020). Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction. Plant Physiology and Biochemistry, 155, 13-19. https://doi.org/10.1016/j.plaphy.2020.07.020
Sheng, H., Ma, J., Pu, J. & Wang, L. (2018). Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells. Annals of Botany, 122(2), 303-313. https://doi.org/10.1093/aob/mcy068
Shivaraj, S. M., Mandlik, R., Bhat, J. A., Raturi, G., Elbaum, R., Alexander, L., Tripathi, D.K., Deshmukh, R. & Sonah, H. (2022). Outstanding questions on the beneficial role of silicon in crop plants. Plant and Cell Physiology, 63(1), 4-18. https://doi.org/10.1093/pcp/pcab145
Singh, P., Kumar, V., Sharma, J., Saini, S., Sharma, P., Kumar, S.,  Sinhmar, Y., Kumar, D. & Sharma, A. (2022). Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants, 11(19), 2525. https://doi.org/10.3390/plants11192525
Sommer, M., Kaczorek, D., Kuzyakov, Y. & Breuer, J. (2006). Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science, 169(3), 310-329. https://doi.org/10.1002/jpln.200690016
Sørensen, I., Pettolino, F. A., Wilson, S. M., Doblin, M. S., Johansen, B., Bacic, A. & Willats, W. G. (2008). Mixed‐linkage (1→ 3),(1→ 4)‐β‐d‐glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. The Plant Journal, 54(3), 510-521. https://doi.org/10.1111/j.1365-313X.2008.03453.x
Soukup, M., Rodriguez Zancajo, V. M., Kneipp, J. & Elbaum, R. (2020). Formation of root silica aggregates in sorghum is an active process of the endodermis. Journal of Experimental Botany, 71(21), 6807-6817. https://doi.org/10.1093/jxb/erz387
Souri, Z., Khanna, K., Karimi, N. & Ahmad, P. (2021). Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation, 40, 906-925. https://doi.org/10.1007/s00344-020-10172-7
Tegeder, M. & Masclaux‐Daubresse, C. (2018). Source and sink mechanisms of nitrogen transport and use. New Phytologist, 217(1), 35-53. https://doi.org/10.1111/nph.14 876
Tran, T. T., Nguyen, T. T., Nguyen, V. T., Huynh, H. T., Nguyen, T. T. & Nguyen, M. N. (2019). Copper encapsulated in grass-derived phytoliths: Characterization, dissolution properties and the relation of content to soil properties. Journal of Environmental Management, 249, 109423. https://doi.org/10.1016/j.jenvman.2019.109423
Tubaña, B. S. & Heckman, J. R. (2015). Silicon in soils and plants. Silicon and Plant Diseases, 7-51. https://doi.org/10.1007/978-3-319-22930-0_2
Wang, L., Ning, C., Pan, T. & Cai, K. (2022). Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. International Journal of Molecular Sciences, 23(4), 1947.  https://doi.org/10.3390/ijms23041947
Wani, A. H., Mir, S. H., Kumar, S., Malik, M. A., Tyub, S. & Rashid, I. (2022). Silicon en route-from loam to leaf. Plant Growth Regulation, 1-12. https://doi.org/10.1007/s10725-022-00931-9
Watteau, F. & Villemin, G. (2001). Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. European Journal of Soil Science, 52(3), 385-396. doi: 10.1046/j.1365-2389.2001.00391.x
Williams, R. J. P. (2007). Introduction to silicon chemistry and biochemistry. Silicon Biochemistry, 24-29. https://doi.org/10.1002/9780470513323.ch3
Xiao, C. & Anderson, C. T. (2013). Roles of pectin in biomass yield and processing for biofuels. Frontiers in Plant Science, 4, 67. https://doi.org/10.3389/fpls.2013.00067
Xiao, Z., Yan, G., Ye, M. & Liang, Y. (2021). Silicon relieves aluminum‐induced inhibition of cell elongation in rice root apex by reducing the deposition of aluminum in the cell wall. Plant and Soil, 462(1), 189-205. https://doi.org/10.1007/s11104-021-04850-y
Yang, X. Y., Zeng, Z. H., Yan, J. Y., Fan, W., Bian, H. W., Zhu, M. Y., Yang, J.L. & Zheng, S. J. (2013). Association of specific pectin methylesterases with Al‐induced root elongation inhibition in rice. Physiologia Plantarum, 148(4), 502-511. https://doi.org/10.1111/ppl.12005
Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M. & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 9(3), 1-16.  doi:10.1007/s13205-019-1613-z 
Zexer, N. & Elbaum, R. (2020). Unique lignin modifications pattern the nucleation of silica in sorghum endodermis. Journal of Experimental Botany, 71(21), 6818-6829. https://doi.org/10.1093/jxb/eraa127
Zhang, C., Wang, L., Zhang, W. & Zhang, F. (2013). Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis?. Plant and Soil, 372(1), 137-149. DOI 10.1007/s11104-013-1723-z
Zhang, T., Tang, H., Vavylonis, D. & Cosgrove, D. J. (2019). Disentangling loosening from softening: insights into primary cell wall structure. The Plant Journal, 100(6), 1101-1117. https://doi.org/10.1111/tpj.14519
Zhang, X., Song, Z., Hao, Q., Yu, C., Liu, H., Chen, C., Müller, K. & Wang, H. (2020). Storage of soil phytoliths and phytolith-occluded carbon along a precipitation gradient in grasslands of northern China. Geoderma, 364, 114200. https://doi.org/10.1016/j.geoderma.2020.114200
Zhao, D., Xu, C., Luan, Y., Shi, W., Tang, Y. & Tao, J. (2021). Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.). International Journal of Biological Macromolecules, 190, 769-779. https://doi.org/10.1016/j.ijbiomac.20 21.09.016
Zhu, X. F., Lei, G. J., Jiang, T., Liu, Y., Li, G. X. & Zheng, S. J. (2012). Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta, 236, 989-997. https://doi.org/10.1016/j.ijbiomac.2021.09.016
Section
Research Articles

How to Cite

Interaction of silicon with cell wall components in plants: A review. (2023). Journal of Applied and Natural Science, 15(2), 480-497. https://doi.org/10.31018/jans.v15i2.4352