##plugins.themes.bootstrap3.article.main##

Tarnee Phimphong Phoutthasone Sibounnavong Siviengkhek Phommalath Jenjira Wongdee Pongpan Songwattana Pongdet Piromyou Teerana Greetatorn Nantakorn Boonkerd Panlada Tittabutr Neung Teaumroong

Abstract

The interaction between leguminous plants and Bradyrhizobium is limited, known as host specificity. Therefore, the selection of an appropriate Bradyrhizobia for use as biofertilizer inoculum for legumes is necessary. The Arachis hypogea L. is the most popular legume produced in the Lao People's Democratic Republic (PDR). Therefore, this research aimed to obtain the appropriate Bradyrhizobia that provides high efficiency in A. hypogea production in the Lao PDR. The 14 isolates were obtained from root nodules of A. hypogea L. trapped with Lao PDR soil samples. Three were the top isolates PMVTL-01, SMVTL-02, and BLXBL-03 showing high efficiency for peanut growth promotion. Strains PMVTL-01 and SMVTL-02 were closely related to the Bradyrhizobium geno sp. SA-3 Rp7b and B. zhanjiangense, respectively, whilst strain BLXBL-03 was closely related to Bradyrhizobium sp. CCBAU51745 and B. manausense BR3351. The competitiveness of these strains with Bradyrhizobium sp. SUTN9-2::GFP was analyzed, and only Bradyrhizobium sp. SMVTL-02 performed a number of occupied nodules higher than SUTN9-2::GFP. In addition, the competitiveness of the selected strain Bradyrhizobium sp. SMVTL-02 in a soil sample from the Lao PDR in the pot level was employed by tagging the SMVTL-02 with the DsRed gene. The results demonstrated that the DsRed-expressing tagged strain showed higher nodule occupancy than indigenous strains. Moreover, the results of the acetylene reduction assay (ARA), nodule number, nodule dry weight, and total plant dry weight from the pot experiment that inoculated with the SMVTL-02::DsRed were presented as having high potential to promote peanut growth as compared to non-inoculation. Thus, Bradyrhizobium sp. SMVTL-02 could be considered a potential biofertilizer inoculum for A. hypogea production in the Lao PDR.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Arachis hypogea L., Biofertilizer, Bradyrhizobium sp., Isolation, Inoculum, Nitrogen fixation

References
Alaswad, A. A., Oehrle, N. W. & Krishnan, H. B. (2019). Classical Soybean (Glycine max (L.) Merr) Symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, Reveal Contrasting Symbiotic Phenotype on Pigeon Pea (Cajanus cajan (L.) Millsp). International Journal of Molecular Sciences, 20(5), Article 5. https://doi.org/10.3390/ijms20051091
Alwi, N., Wynne, J. C., Rawlings, J. O., Schneeweis, T. J. & Elkan, G. E. (1989). Symbiotic relationship between Bradyrhizobium strains and peanut. Crop Science. Crop Science, 29, 50–54.
Archana, G. (2010). Engineering Nodulation Competitiveness of Rhizobial Bioinoculants in Soils. In M. S. Khan, J. Musarrat & A. Zaidi (Eds.), Microbes for Legume Improvement (pp. 157–194). Springer. https://doi.org/10.1007/978-3-211-99753-6_8
Arora, N. K. & Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7(6), 381. https://doi.org/10.1007/s13205-017-1008-y
Atieno, M., Herrmann, L., Nguyen, H. T., Phan, H. T., Nguyen, N. K., Srean, P., Than, M. M., Zhiyong, R., Tittabutr, P., Shutsrirung, A., Bräu, L. & Lesueur, D. (2020). Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. Journal of Environmental Management, 275, 111300. https://doi.org/10.1016/j.jenvman.2020.111300
Avontuur, J. R., Palmer, M., Beukes, C. W., Chan, W. Y., Coetzee, M. P. A., Blom, J., Stępkowski, T., Kyrpides, N. C., Woyke, T., Shapiro, N., Whitman, W. B., Venter, S. N. & Steenkamp, E. T. (2019). Genome-informed Bradyrhizobium taxonomy: Where to from here? Systematic and Applied Microbiology, 42(4), 427–439. https://doi.org/10.1016/j.syapm.2019.03.006
Azarias Guimarães, A., Florentino, L. A., Alves Almeida, K., Lebbe, L., Barroso Silva, K., Willems, A. & de Souza Moreira, F. M. (2015). High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Systematic and Applied Microbiology, 38(6), 433–441. https://doi.org/10.1016/j.syapm.2015.06.006
Bal, H. B., Das, S., Dangar, T. K. & Adhya, T. K. (2013). ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. Journal of Basic Microbiology, 53(12), 972–984. https://doi.org/10.1002/jobm.201200445
Bogino, P., Banchio, E., Bonfiglio, C. & Giordano, W. (2008). Competitiveness of a Bradyrhizobium sp. Strain in Soils Containing Indigenous Rhizobia. Current Microbiology, 56(1), 66–72. https://doi.org/10.1007/s00284-007-9041-4
Bogino, P., Banchio, E., Rinaudi, L., Cerioni, G., Bonfiglio, C. & Giordano, W. (2006). Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. In soils of Argentina. Annals of Applied Biology, 148(3), 207–212. https://doi.org/10.1111/j.1744-7348.2006.00055.x
Bonaldi, K., Gargani, D., Prin, Y., Fardoux, J., Gully, D., Nouwen, N., Goormachtig, S. & Giraud, E. (2011). Nodulation of Aeschynomene afraspera and A. indica by Photosynthetic Bradyrhizobium Sp. Strain ORS285: The Nod-Dependent Versus the Nod-Independent Symbiotic Interaction. Molecular Plant-Microbe Interactions®, 24(11), 1359–1371. https://doi.org/10.1094/MPMI-04-11-0093
Bric, J. M., Bostock, R. M. & Silverstone, S. E. (1991). Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Applied and Environmental Microbiology, 57(2), 535–538. https://doi.org/10.1128/aem.57.2.535-538.1991
Carson, K. C., Holliday, S., Glenn, A. R. & Dilworth, M. J. (1992). Siderophore and organic acid production in root nodule bacteria. Archives of Microbiology, 157(3), 264–271. https://doi.org/10.1007/BF00245160
Cole, M. A. & Elkan, G. H. (1973). Transmissible Resistance to Penicillin G, Neomycin, and Chloramphenicol in Rhizobium japonicum. Antimicrobial Agents and Chemotherapy, 4(3), 248–253. https://doi.org/10.1128/AAC.4.3.248
David, K. A. V., Apte, S. K., Banerji, A. & Thomas, J. (1980). Acetylene Reduction Assay for Nitrogenase Activity: Gas Chromatographic Determination of Ethylene Per Sample in Less Than One Min.. Applied and Environmental Microbiology, 39(5), 1078–1080. https://doi.org/10.1128/aem.39.5.1078-1080.1980
Dilworth, M. J., Carson, K. C., Giles, R. G. F., Byrne, L. T. & Glenn, A. R. Y. 1998. (1998). Rhizobium leguminosarum bv. Viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. Microbiology, 144(3), 781–791. https://doi.org/10.1099/00221287-144-3-781
Ehrhardt, D. W., Atkinson, E. M. & Long, S. R. (1992). Depolarization of Alfalfa Root Hair Membrane Potential by Rhizobium meliloti Nod Factors. Science, 256(5059), 998–1000. https://doi.org/10.1126/science.10744524
Elkan, G. (1992). Taxonomy of the rhizobia. https://cdnsciencepub.com/doi/abs/10.1139/m92-075
Ferguson, B. J. (2017). Rhizobia and Legume Nodulation Genes☆. In Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.07071-0
Figurski, D. H. & Helinski, D. R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. https://doi.org/10.1073/pnas.76.4.1648
Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. & Young, J. P. 2001. (2001). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2037–2048. https://doi.org/10.1099/00207713-51-6-2037
Glenn, A. R. & Dilworth, M. J. (1981). The uptake and hydrolysis of disaccharides by fast-and slow-growing species of Rhizobium. Archives of Microbiology, 129(3), 238–239. https://doi.org/10.1007/BF00425257
Guerinot, M. L. (1994). Microbial iron transport. Annual Review of Microbiology, 48, 743–773.
Hartmann, A. & Amarger, N. (1991). Genotypic diversity of an indigenous Rhizobium meliloti field population assessed by plasmid profiles, DNA fingerprinting, and insertion sequence typing. Canadian Journal of Microbiology, 37(8), 600–608. https://doi.org/10.1139/m91-102
Hayashi, M., Shiro, S., Kanamori, H., Mori-Hosokawa, S., Sasaki-Yamagata, H., Sayama, T., Nishioka, M., Takahashi, M., Ishimoto, M., Katayose, Y., Kaga, A., Harada, K., Kouchi, H., Saeki, Y. & Umehara, Y. (2014). A Thaumatin-Like Protein, Rj4, Controls Nodule Symbiotic Specificity in Soybean. Plant and Cell Physiology, 55(9), 1679–1689. https://doi.org/10.1093/pcp/pcu099
Howarth, R. W. (2022). Nitrogen☆. In T. Mehner & K. Tockner (Eds.), Encyclopedia of Inland Waters (Second Edition) (pp. 155–162). Elsevier. https://doi.org/10.1016/B978-0-12-819166-8.00138-9
Igiehon, N. O. & Babalola, O. O. (2018). Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. International Journal of Environmental Research and Public Health, 15(4), Article 4. https://doi.org/10.3390/ijerph15040574
Islam, M. S., Kawasaki, H., Muramatsu, Y., Nakagawa, Y. & Seki, T. (2008). Bradyrhizobium iriomotense sp. Nov., Isolated from a Tumor-Like Root of the Legume Entada koshunensis from Iriomote Island in Japan. Bioscience, Biotechnology, and Biochemistry, 72(6), 1416–1429. https://doi.org/10.1271/bbb.70739
Johnston, A. (2004). Mechanisms and Regulation of Iron Uptake in the Rhizobia. https://doi.org/10.1128/9781555816544.CH30
Josey, D. P., Beynon, J. L., Johnston, A. W. B. & Beringer, J. E. (1979). Strain Identification in Rhizobium Using Intrinsic Antibiotic Resistance. Journal of Applied Bacteriology, 46(2), 343–350. https://doi.org/10.1111/j.1365-2672.1979.tb00830.x
Kathalia, M., Taryono, T. & Sayekti, R. S. (2020). The Response of Some Yardlong Bean (Vigna unguiculata subsp. Sesquipedalis) Accessions to Bradyrhizobium Inoculation. Agrotechnology Innovation (Agrinova), 3(1), Article 1. https://doi.org/10.22146/a.58347
Klepa, M. S., Helene, L. C. F., O´Hara, G. & Hungria, M. (2022). Bradyrhizobium cenepequi sp. Nov., Bradyrhizobium semiaridum sp. Nov., Bradyrhizobium hereditatis sp. Nov. And Bradyrhizobium australafricanum sp. Nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. International Journal of Systematic and Evolutionary Microbiology, 72(7). https://doi.org/10.1099/ijsem.0.005446
Kumar, N., Lad, G., Giuntini, E., Kaye, M. E., Udomwong, P., Shamsani, N. J., Young, J. P. W. & Bailly, X. (2015). Bacterial genospecies that are not ecologically coherent: Population genomics of Rhizobium leguminosarum. Open Biology, 5(1), 140133. https://doi.org/10.1098/rsob.140133
Leelahawonge, C., Nuntagij, A., Teaumroong, N., Boonkerd, N. & Pongsilp, N. (2010). Characterization of root-nodule bacteria isolated from the medicinal legume Indigofera tinctoria. Annals of Microbiology, 60(1), Article 1. https://doi.org/10.1007/s13213-009-0005-8
Li, Y. H., Wang, R., Sui, X. H., Wang, E. T., Zhang, X. X., Tian, C. F., Chen, W. F. & Chen, W. X. (2019). Bradyrhizobium nanningense sp. Nov., Bradyrhizobium guangzhouense sp. Nov. And Bradyrhizobium zhanjiangense sp. Nov., isolated from effective nodules of peanut in Southeast China. Systematic and Applied Microbiology, 42(5), 126002. https://doi.org/10.1016/j.syapm.2019.126002
Li, Y. H., Wang, R., Zhang, X. X., Young, J. Peter. W., Wang, E. T., Sui, X. H. & Chen, W. X. (2015). Bradyrhizobium guangdongense sp. Nov. And Bradyrhizobium guangxiense sp. Nov., isolated from effective nodules of peanut. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_12), 4655–4661. https://doi.org/10.1099/ijsem.0.000629
Liu, M., Adl, S., Cui, X., Tian, Y., Xu, X. & Kuzyakov, Y. (2020). In situ methods of plant-microbial interactions for nitrogen in rhizosphere. Rhizosphere, 13, 100186. https://doi.org/10.1016/j.rhisph.2020.100186
Martins da Costa, E., Soares de Carvalho, T., Azarias Guimarães, A., Ribas Leão, A. C., Magalhães Cruz, L., de Baura, V. A., Lebbe, L., Willems, A. & de Souza Moreira, F. M. (2019). Classification of the inoculant strain of cowpea UFLA03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici). Brazilian Journal of Microbiology, 50(2), 335–345. https://doi.org/10.1007/s42770-019-00045-x
Miljakovic, D., Marinković, J., Ignjatov, M., Milosević, D., Nikolić, Z., Tintor, B. & Đukić, V. (2022). Competitiveness of Bradyrhizobium japonicum inoculation strain for soybean nodule occupancy. Plant, Soil and Environment, 68(No. 1), 59–64. https://doi.org/10.17221/430/2021-PSE
Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, ahead, 0–0. https://doi.org/10.4067/S0718-95162013005000051
Ngwenya, Z. D., Mohammed, M., Jaiswal, S. K. & Dakora, F. D. (2022). Phylogenetic relationships among Bradyrhizobium species nodulating groundnut (Arachis hypogea L.), jack bean (Canavalia ensiformis L.) and soybean (Glycine max Merr.) in Eswatini. Scientific Reports, 12(1), 10629. https://doi.org/10.1038/s41598-022-14455-9
Noisangiam, R., Teamtisong, K., Tittabutr, P., Boonkerd, N., Toshiki, U., Minamisawa, K. & Teaumroong, N. (2012). Genetic Diversity, Symbiotic Evolution, and Proposed Infection Process of Bradyrhizobium Strains Isolated from Root Nodules of Aeschynomene americana L. in Thailand. Applied and Environmental Microbiology, 78(17), 6236–6250. https://doi.org/10.1128/AEM.00897-12
Nzoué, A., Miché, L., Klonowska, A., Laguerre, G., de Lajudie, P. & Moulin, L. (2009). Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Systematic and Applied Microbiology, 32(6), 400–412. https://doi.org/10.1016/j.syapm.2009.06.002
Ojiewo, C. O., Janila, P., Bhatnagar-Mathur, P., Pandey, M. K., Desmae, H., Okori, P., Mwololo, J., Ajeigbe, H., Njuguna-Mungai, E., Muricho, G., Akpo, E., Gichohi-Wainaina, W. N., Variath, M. T., Radhakrishnan, T., Dobariya, K. L., Bera, S. K., Rathnakumar, A. L., Manivannan, N., Vasanthi, R. P., … Varshney, R. K. (2020). Advances in Crop Improvement and Delivery Research for Nutritional Quality and Health Benefits of Groundnut (Arachis hypogaea L.). Frontiers in Plant Science, 11. https://www.frontiersin.org/articles/10.3389/fpls.2020.00029
Okubo, T., Fukushima, S., Itakura, M., Oshima, K., Longtonglang, A., Teaumroong, N., Mitsui, H., Hattori, M., Hattori, R., Hattori, T. & Minamisawa, K. (2013). Genome Analysis Suggests that the Soil Oligotrophic Bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) Is a Nitrogen-Fixing Symbiont of Aeschynomene indica. Applied and Environmental Microbiology, 79(8), 2542–2551. https://doi.org/10.1128/AEM.00009-13
Payne, S. M. (1993). Iron acquisition in microbial pathogenesis. Trends in Microbiology, 1(2), 66–69. https://doi.org/10.1016/0966-842X(93)90036-Q
Piromyou, P., Greetatorn, T., Teamtisong, K., Okubo, T., Shinoda, R., Nuntakij, A., Tittabutr, P., Boonkerd, N., Minamisawa, K. & Teaumroong, N. (2015). Preferential Association of Endophytic Bradyrhizobia with Different Rice Cultivars and Its Implications for Rice Endophyte Evolution. Applied and Environmental Microbiology, 81(9), 3049–3061. https://doi.org/10.1128/AEM.04253-14
Piromyou, P., Greetatorn, T., Teamtisong, K., Tittabutr, P., Boonkerd, N. & Teaumroong, N. (2017). Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation. Applied and Environmental Microbiology, 83(22), e01488-17. https://doi.org/10.1128/AEM.01488-17
Piromyou, P., Songwattana, P., Boonchuen, P., Nguyen, H. P., Manassila, M., Tantanuch, W., Maikhunthod, B., Teamtisong, K., Tittabut, P., Boonkerd, N., Giraud, E. & Teaumroong, N. (2021). The New Putative Type III Effector SkP48 in Bradyrhizobium sp. DOA9 is Involved in Legume Nodulation [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-900464/v1
Piromyou, P., Songwattana, P., Greetatorn, T., Okubo, T., Kakizaki, K. C., Prakamhang, J., Tittabutr, P., Boonkerd, N., Teaumroong, N. & Minamisawa, K. (2015). The Type III Secretion System (T3SS) is a Determinant for Rice-Endophyte Colonization by Non-Photosynthetic Bradyrhizobium. Microbes and Environments, advpub, ME15080. https://doi.org/10.1264/jsme2.ME15080
Prell, J. & Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology, 14(4), 161–168. https://doi.org/10.1016/j.tim.2006.02.005
Priyadarshini, P., Choudhury, S., Tilgam, J., Bharati, A. & Sreeshma, N. (2021). Nitrogen fixing cereal: A rising hero towards meeting food security. Plant Physiology and Biochemistry, 167, 912–920. https://doi.org/10.1016/j.plaphy.2021.09.012
Puozaa, D. K., Jaiswal, S. K. & Dakora, F. D. (2017). African origin of Bradyrhizobium populations nodulating Bambara groundnut (Vigna subterranea L. Verdc) in Ghanaian and South African soils. PLOS ONE, 12(9), e0184943. https://doi.org/10.1371/journal.pone.0184943
Rajendran, G., Sing, F., Desai, A. J. & Archana, G. (2008). Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresource Technology, 99(11), 4544–4550. https://doi.org/10.1016/j.biortech.2007.06.057
Rivas, R., Martens, M., de Lajudie, P. & Willems, A. (2009). Multilocus sequence analysis of the genus Bradyrhizobium. Systematic and Applied Microbiology, 32(2), 101–110. https://doi.org/10.1016/j.syapm.2008.12.005
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning. A laboratory Manual. Cold Spring Harbor Laboratory Press. https://is.muni.cz/publication/372112/en/Molecular-Cloning-A-laboratory-Manual/Sambrook-Fritsch-Maniatis
Shiriki, D., Igyor, M. A. & Gernah, D. I. (2015). Nutritional evaluation of complementary food formulations from maize, soybean and peanut fortified with Moringa oleifera leaf powder. Food and Nutrition Sciences, 6(05), 494.
Silva, F. V., De Meyer, S. E., Simões-Araújo, J. L., Barbé, T. da C., Xavier, G. R., O’Hara, G., Ardley, J. K., Rumjanek, N. G., Willems, A. & Zilli, J. E. (2014). Bradyrhizobium manausense sp. Nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_7), 2358–2363. https://doi.org/10.1099/ijs.0.061259-0
Somasegaran, P. & Hoben, H. J. (2012). Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. Springer Science & Business Media.
Songwattana, P., Chaintreuil, C., Wongdee, J., Teulet, A., Mbaye, M., Piromyou, P., Gully, D., Fardoux, J., Zoumman, A. M. A., Camuel, A., Tittabutr, P., Teaumroong, N. & Giraud, E. (2021). Identification of type III effectors modulating the symbiotic properties of Bradyrhizobium vignae strain ORS3257 with various Vigna species. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-84205-w
Songwattana, P., Noisangiam, R., Teamtisong, K., Prakamhang, J., Teulet, A., Tittabutr, P., Piromyou, P., Boonkerd, N., Giraud, E. & Teaumroong, N. (2017). Type 3 Secretion System (T3SS) of Bradyrhizobium sp. DOA9 and Its Roles in Legume Symbiosis and Rice Endophytic Association. Frontiers in Microbiology, 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.01810
Stacey, G., Burris, R. H. & Evans, H. J. (1992). Biological Nitrogen Fixation. Springer Science & Business Media.
Sturz, A. V., Christie, B. R., Matheson, B. G. & Nowak, J. (1997). Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils. https://scholar.google.com/scholar_lookup?title=Biodiversity+of+endophytic+bacteria+which+colon ize+red+clover+nodules%2C+roots%2C+stems+and+fol iage+and+their+influence+on+host+growth&author=Sturz%2C+A.V.&publication_year=1997
Traxler, M. F., Seyedsayamdost, M. R., Clardy, J. & Kolter, R. (2012). Interspecies modulation of bacterial development through iron competition and siderophore piracy. Molecular Microbiology, 86(3), 628–644. https://doi.org/10.1111/mmi.12008
Van Rossum, D., Schuurmans, F. P., Gillis, M., Muyotcha, A., Van Verseveld, H. W., Stouthamer, A. H. & Boogerd, F. C. (1995). Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Applied and Environmental Microbiology, 61(4), 1599–1609. https://doi.org/10.1128/aem.61.4.1599-1609.1 995
Versalovic, J., Schneider, M., Bruijn, F. J. D. & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5(1), 25–40.
White, J., Prell, J., James, E. K. & Poole, P. (2007). Nutrient Sharing between Symbionts. Plant Physiology, 144(2), 604–614. https://doi.org/10.1104/pp.107.097741
Wójcik, M., Kalita, M. & Małek, W. (2019). Numerical analysis of phenotypic properties, genomic fingerprinting, and multilocus sequence analysis of Bradyrhizobium strains isolated from root nodules of Lembotropis nigricans of the tribe Genisteae. Annals of Microbiology, 69(11), 1123–1134. https://doi.org/10.1007/s13213-019-01491-6
Yates, R. J., Howieson, J. G., Reeve, W. G. & O’Hara, G. W. (2011). A re-appraisal of the biology and terminology describing rhizobial strain success in nodule occupancy of legumes in agriculture. Plant and Soil, 348(1), 255. https://doi.org/10.1007/s11104-011-0971-z
You, Z., Marutani, M. & Borthakur, D. (2002). Diversity among Bradyrhizobium isolates nodulating yardlong bean and sunnhemp in Guam. Journal of Applied Microbiology, 93(4), 577–584. https://doi.org/10.1046/j.1365-2672.20 02.01733.x
Young, C. C. & Chao, C. C. (1989). Intrinsic antibiotic resistance and competition in fast- and slow-growing soybean rhizobia on a hybrid of Asian and US cultivars. Biology and Fertility of Soils, 8(1), 66–70. https://doi.org/10.1007/BF00260518
Yu, X., Shoaib, M., Cheng, X., Cui, Y., Hussain, S., Yan, J., Zhou, J., Chen, Q., Gu, Y., Zou, L., Zhang, X., Hao, S., Zhao, K., Ma, M., Xiang, Q., Li, S. & Zou, T. (2022). Role of rhizobia in promoting non-enzymatic antioxidants to mitigate nitrogen-deficiency and nickel stresses in Pongamia pinnata. Ecotoxicology and Environmental Safety, 241, 113789. https://doi.org/10.1016/j.ecoenv.2022.113789
Yuhashi, K.-I., Ichikawa, N., Ezura, H., Akao, S., Minakawa, Y., Nukui, N., Yasuta, T. & Minamisawa, K. (2000). Rhizobitoxine Production by Bradyrhizobium elkanii Enhances Nodulation and Competitiveness on Macroptilium atropurpureum. Applied and Environmental Microbiology, 66(6), 2658–2663. https://doi.org/10.1128/AEM.66.6.2658-2663.2000
Section
Research Articles

How to Cite

Selection and evaluation of Bradyrhizobium inoculum for peanut, Arachis hypogea production in the Lao People’s Democratic Republic. (2023). Journal of Applied and Natural Science, 15(1), 137-154. https://doi.org/10.31018/jans.v15i1.4270