Article Main

Harish Punia Somveer Jakhar

Abstract

The concept of functional diversity is critical in the field of forest ecology as it helps determine trends in community structure and worldwide change by examining variations in functional traits among plants. Functional traits like leaf traits, stem traits, root traits etc., are characteristics of a species that incorporate its ecological and evolutionary history and can be used to predict both its response and impact on ecosystem function. During the present study, six functional leaf traits viz., leaf size (LS), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf nitrogen to phosphorus ratio (N:P) were evaluated for a variety of trees and shrubs in the forests of semi-arid regions of Haryana, India i.e., Site I-Dulana (Mahendergarh), Site II-Kheri Batter (Charkhi Dadri) and Site III-Asalwas Dubia (Bhiwani). Functional leaf trait values showed a significant variation.  LS was reported to be positively correlated with SLA(0.39) and N:P(0.11) while negatively correlated with LDMC(-0.26) LNC(-0.29) and LPC(-0.16). The selected plant species displayed a negative but weak correlation between SLA and LNC(-0.05) whilst a strong positive correlation between Nitrogen (N) and Phosphorus (P)(0.36). All three Sites had the value of N:P ranging from 12.58 to 65.69, thus exhibiting P limitation.  The present study advances the field of functional ecology in Haryana's tropical dry forests significantly.  This is also crucial to forecast community formation trends and characterize the contributions of different species to ecological processes.

Article Details

Article Details

Keywords

Community structure, Ecosystem functions, Functional diversity, Functional leaf traits

References
Akram, M.A., Zhang, Y., Wang, X., Shrestha, N., Malik, K., Khan, I.,Ma, W., Sun, Y.,Fan, Y., Ran, J. & Deng, J. (2022). Phylogenetic independence in the variations in leaf functional traits among different plant life forms in an arid environment. Journal of Plant Physiology, 272,153671. https://doi.org/10.1016/j.jplph.2022.15 36 71.
Bolom-Ton, F. (2016). Factors affecting variation in forest community characteristics and leaf-litter decomposition in tropical montane forest of Chiapas, Mexico: a functional ecology approach. Bangor University (United Kingdom).
Bremner, J.M. & Mulvaney, C.S. (1982). Nitrogen-total. In A.L. Page (Ed.). Methods of soil analysis. Part 2. Chemical and microbiological properties .pp. 595-624. Madison, WI, USA: Soil Science Society of America. https://doi.org/10.2134/ agronmonogr9.2.2ed.c31.
Chaturvedi, R. K., Raghubanshi, A. S. & Singh, J. S. (2011). Leaf attributes and tree growth in a tropical dry forest. Journal of Vegetation Science, 22(5), 917-931.https://doi.org/10.1111/j.1654-1103.2011.01299.x
Cochrane, A., Hoyle, G. L., Yates, C. J., Neeman, T. & Nicotra, A. B. (2016). Variation in plant functional traits across and within four species of Western Australian Banksia (Proteaceae) along a natural climate gradient. Austral Ecology, 41(8), 886-896. https://doi.org/10.1111/aec.12381
Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological monographs, 53(2), 209-234. https://doi.org/10.2307/1942495
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P.B., Ter Steege, H., Morgan, H.D., Van Der Heijden, M.G.A., & Pausas, J.G. (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian journal of Botany, 51(4), 335-380. https://doi.org/10.1071/BT02124
Cramer, W. P. & Leemans, R. (1993). Assessing impacts of climate change on vegetation using climate classification systems. In Vegetation dynamics & global change (pp. 190-217). Springer, Boston, MA.https://doi.org/10.1007/978-1-4615-2816-6_10
de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H., Bardgett, R. D., Berg, M.P., Cipriotti, P., Feld, C.K., Hering, D. & Martins da Silva, P. (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19(10), 2873-2893. 19:2873-2893. https://doi.org/10.1007/s10531-010-9850-9
Dhiman, H., Saharan, H. & Jakhar, S. (2021). Analysis of Functional Leaf Trait Variation among the Dominant Understorey Species in the Pine Forest of Morni Hills, Panchkula, Haryana. Journal of Tropical Life Sciences, 11 (2), 233-240. https://doi.org/10.11594/jtls.11.02.13
Dı́az, S. & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16(11), 646-655.https://doi.org/10.1016/S0169-5347(01)02283-2
Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K. & Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, 104(52), 20684-20689. https://doi.org/10.1073/pnas.07 04716104
Dubey, P., Raghubanshi, A. & Dwivedi, A.K. (2017). Relationship among specific leaf area, leaf nitrogen, leaf phosphorus and photosynthetic rate in herbaceous species of tropical dry deciduous in Vindhyan highlands. Annals of Plant Sciences, 6,1531-1536. http://dx.doi.org/10.21746/aps.2017.02.001
Fornara, D.A. & Tilman, D. (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96(2),314–322. https://doi.org/10.1111/j.1365-2745.2007.01345.x
Garnier, E., Cordonnier, P., Guillerm, J. L. & Sonié, L. (1997). Specific leaf area and leaf nitrogen concentration in annual and perennial grass species growing in Mediterranean old-fields. Oecologia, 111(4), 490-498.https://doi.org/10.1007/s004420050262
Garnier, E., Navas, M. L. & Grigulis, K. (2016). Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press.
Gondard, H., Romane, F., Aronson, J. & Shater, Z. (2003). Impact of soil surface disturbances on functional group diversity after clear-cutting in Aleppo pine (Pinus halepensis) forests in southern France. Forest Ecology and Management, 180(1-3), 165-174.https://doi.org/10.1016/S0378-1127(02)00597-2
Gong, H., Cui, Q. & Gao, J. (2020). Latitudinal, soil and climate effects on key leaf traits in northeastern China. Global Ecology and Conservation, 22, e00904.https://doi.org/10.1016/j.gecco.2020.e00904
Grime, J. P., Thompson, K., Hunt, R., Hodgson, J. G., Cornelissen, J. H. C., Rorison, I. H.,Hendry, G.A.F., Ashenden, T.W., Askew, A.P., Band, S.R., Booth, R.E., Bossard, C.C., Campbell, B.D., Cooper, J.E.L., Davison, A.W., Gupta, P.L., Hall, W., Hand, D.W., Hannah, M.A., Hillier, S.H., Hodkinson, D.J., Jalili, A., Liu, Z., Mackey, J.M.L., Matthews, N., Mowforth, M.A., Neal, A.M., Reader, R.J., Reiling, K., Ross-Fraser, W., Spencer, R.E., Sutton, F., Tasker, D.E., Thorpe, P.C. & Whitehouse, J. (1997). Integrated screening validates primary axes of specialization in plants. Oikos, 79,259–281. https://doi.org/10.2307/3546011.
Güsewell, S. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 16492),243-266. https://doi.org/10.1111/j.1469-8137.200 4.01192.x
Jackson, M.L. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India. 498,151-154.
Kaushik, P., Pati, P. K., Chadhar, B. L., Khan, M. L. & Khare, P. K. (2022). Functional dispersion and variation in above-ground traits in tropical dry deciduous forests of Central India. International Journal of Ecology and Environmental Sciences, 48(2), 251-264.
Keddy, P. A. (1992). Assembly and response rules: two goals for predictive community ecology. Journal of vegetation science, 3(2), 157-164.https://doi.org/10.2307/32 35676
Lambers, H. & Poorter, H. (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23,187-261. https://doi.org/10.1016/S0065-2504(08)60148-8
Lavorel, S., Díaz, S., Cornelissen, J. H. C., Garnier, E., Harrison, S. P., McIntyre, S. & Urcelay, C. (2007). Plant functional types: Are we getting any closer to the holy grail?. Terrestrial Ecosystems in a Changing World, 17,149–164. https://doi.org/10.1007/978-3-540-32730-1_13
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M. P., Garden, D., Girel, J., Pellet, G. & Douzet, R. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99(1), 135-147. https://doi.org/10.1111/j.1365-2745.2 010.01753.x
Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412(6842), 72-76.https://doi.org/10.1038/35083573
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in ecology & evolution, 21(4), 178-185.https://doi.org/10.1016/j.tree.2006.02.002
Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. (1994). Declining biodiversity can alter the performance of ecosystems. Nature, 368(6473), 734-737.https://doi.org/10.1038/368734a0
Olde Venterink, H. (2011). Does phosphorus limitation promote species-rich plant communities?. Plant and Soil, 345(1), 1-9.https://doi.org/10.1007/s11104-011-0796-9
Ordonez, A., Wright, I. J. & Olff, H. (2010). Functional differences between native and alien species: a global‐scale comparison. Functional Ecology, 24(6), 1353-1361. https://doi.org/10.1111/j.1365-2435.2010.01739.x
Osnas, J. L., Katabuchi, M., Kitajima, K., Wright, S. J., Reich, P. B., Van Bael, S. A., & Lichstein, J. W. (2018). Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences, 115(21), 5480-5485.
Poorter, H., & Garnier, E. (1999) Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire, F.I. & Valladares, F. (eds.) Handbook of functional plant ecology 81-120. Marcel Dekker, New York, NY.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New phytologist, 182(3), 565-588.https://doi.org/10.1111/j.1469-8137.2009.02830.x
Powers, J. S, & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology, 24(4), 927-936.https://doi.org/10.1111/j.1365-2435.20 10.01701.x
Peguero-Pina, J. J., Vilagrosa, A., Alonso-Forn, D., Ferrio, J. P., Sancho-Knapik, D. & Gil-Pelegrín, E. (2020). Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests, 11(10), 1028.
Ratnam, J., Chengappa, S. K., Machado, S. J., Nataraj, N., Osuri, A. M. & Sankaran, M. (2019). Functional traits of trees from dry deciduous “forests” of southern India suggest seasonal drought and fire are important drivers. Frontiers in Ecology and Evolution, 7, 8. https://doi.org/10.3389/fevo.2019.00008
Roberts, R. E., Clark, D. L. & Wilson, M. V. (2010). Traits, neighbors, and species performance in prairie restoration. Applied Vegetation Science, 13(3), 270-279. https://doi.org/10.1111/j.1654-109X.2009.01073.x
Sandel, B., Corbin, J. D. & Krupa, M. (2011). Using plant functional traits to guide restoration: A case study in California coastal grassland. Ecosphere, 2(2), 1-16.https://doi.org/10.1890/ES10-00175.1
Santiago, L.S. & Wright, S.J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21,19-27. 10. 1111/j.1365- 2435.20 06.01218.x
Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N. & Schulze, E. D. (2012). Using plant functional traits to explain diversity–productivity relationships. PloS one, 7(5), e36760.  https://doi.org/10.1371/journal.p one.0036760
Sullivan MJ, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Sanchez AC, Ewango CE, Hubau W, Marimon B, Monteagudo-Mendoza A. & Qie L. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science. 22;368(6493):869-74.
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277(5330), 1300-1302.10.1126/science.277.5330.1300
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and soil, 199(2), 213-227.https://doi.org/10.1023/A:1004327224729
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual review of ecology and systematics,13, 125-159.DOI: 10.1146/annurev.ecolsys.33.010802.150452.
Wright, I. J. & Westoby, M. (2001). Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalizations across growth forms and growth irradiance. Oecologia, 127(1), 21-29. https://doi.org/10.1007/s004420000554
Wright, I. J., Reich, P. B. & Westoby, M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high‐and low‐rainfall and high‐and low‐nutrient habitats. Functional Ecology, 15(4), 423-434. https://doi.org/10.1046/j.0269-8463.2001.00542.x
Wu, T. G., Yu, M. K., Wang, G. G., Dong, Y. & Cheng, X. R. (2012). Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China. Biochemical Systematics and Ecology, 44, 255-263. https://doi.org/10.1016/j.bse.2012.06.002
Zandalinas, S. I., Fritschi, F. B. & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588–599. https://doi.org/10.1016/j.tplants.2021.02.011
Zirbel, C. R., Bassett, T., Grman, E. & Brudvig, L. A. (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54(4), 1070-1079.
Section
Research Articles

How to Cite

Variations in functional leaf traits of trees and shrubs in the semi-arid regions of Haryana, India . (2023). Journal of Applied and Natural Science, 15(2), 464-472. https://doi.org/10.31018/jans.v15i2.4258