References
Antonopoulou, C. & Chatzissavvidis, C. (2022). Impact of boron and its toxicity on the photosynthetic capacity of plants. In Boron in Plants and Agriculture (pp. 169-186). Academic Press. doi.org/10.1016/B978-0-323-90857-3.00006-0
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24,1–15. doi: 10.1104/pp.24.1.1
Bariya, H., Bagtharia, S. & Patel, A. (2014). Boron: A promising nutrient for increasing growth and yield of plants. In Nutrient use efficiency in plants (pp. 153-170). Springer, Cham.
doi: 10.1007/978-3-319-10635-9_6
Bejandi, T. K., Sharifii, R. S., Sedghi, M. & Namvar, A. (2012). Effects of plant density, Rhizobium inoculation and microelements on nodulation, chlorophyll content and yield of chickpea (Cicer arietinum L.). Annals of Biological Research, 3(2), 951-958.
Bellaloui, N., Mengistu, A., Kassem, M. A., Abel, C. A. & Zobiole, L. H. S. (2014). Role of boron nutrient in nodules growth and nitrogen fixation in soybean genotypes under water stress conditions. Advances in Biology and Ecology of Nitrogen Fixation, 29, 237. doi: 10.5772/56994
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://www.jstor.org/stable/42932378
Coba de la Pena, T., Fedorova, E., Pueyo, J. J. & Lucas, M. M. (2018). The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle. Frontiers in Plant Science, 8, 2229. doi.org/10.3389/fpls.2017.02229
EL-Mahmoudy, A. M., Rashed, A., Mohamed, K. S., Kushlaf, N., Eljade, L. & Oshkondali, S. T (2019). The Effect of Rhizobium Bacteria, Vitamin B12 and the Two Elements Boron and Molybdenum on the Characteristic Morphology of Pea Plant. East African Scholars Journal of Agriculture & Life Sciences 2(10), 501-503. doi: 10.36349/easjals.2019.v02i10.006
Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P. & Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom-forming cyanobacteria of the genus Dolichospermum. Aquatic Sciences, 83(2), 1-11. https://link.springer.com/article/10.1 007/s00027-021-00786-8
Laguerre, G., Depret, G., Bourion, V. & Duc, G. (2007). Rhizobium leguminosarum bv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. New Phytologist, 176(3), 680-690. doi: 10.1111/j.1469-8137.2007.02212.x
Lindström, K. & Mousavi, S.A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial biotechnology, 13 (5), 1314-1335. doi.org/10.1111/1751-7915.13517
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.
Mabrouk, Y., Hemissi, I., Salem, I. B., Mejri, S., Saidi, M. & Belhadj, O. (2018). Potential of rhizobia in improving nitrogen fixation and yields of legumes. Symbiosis, 107(73495).doi: 10.5772/intechopen.73495
Mus, F., Crook, M. B., Garcia, K., Garcia Costas, A., Geddes, B. A., Kouri, E. D. & Peters, J. W. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82 (13), 3698-3710. doi: 10.1128/AEM.01055-16
Pulido-Suárez, L., Díaz-Peña, F., Notario-del Pino, J., Medina-Cabrera, A. & León-Barrios, M. (2021). Alteration of soil rhizobial populations by rabbit latrines could impair symbiotic nitrogen fixation in the insular alpine ecosystem of Teide National Park. Applied Soil Ecology, 160, 103850. doi.org/10.1016/j.apsoil.2020.103850
Raj, A. B. & Raj, S. K. (2019). Zinc and boron nutrition in pulses: A review. Journal of Applied and Natural Science, 11(3), 673-679. do: 10.31018/jans.v11i3.2157
Qamar, J., Rehman, A., Ali, M. A., Qamar, R., Ahmed, K. & Raza, W. (2016). Boron increases the growth and yield of mungbean. Journal of Advanced Agricultural Technologies, 6(2), 922-924.
Quddus, M. A., Hossain, M. A., Naser, H. M., Anwar, B., Aktar, S. & Nazimuddin, M. (2018). Effect of zinc and boron application on productivity, quality and nutrient uptake of field pea (Pisum sativum L.) grown in calcareous soils. Journal of Agricultural Science and Practice, 3(6), 132-143. doi: 10.31248/JASP2018.114
Ragaa, A. H. & Safinaz, A. F. (2013). Enhancement of the growth and phenolic content of faba bean (Vicia faba L.) by applying some biofertilizer agents. Journal of Food Studies, 2 (2), 20-30. doi: 10.5296/jfs.v2i1.4425
Redondo‐Nieto, M., Wilmot, A. R., El‐Hamdaoui, A., Bonilla, I. & Bolaños, L. (2003). Relationship between boron and calcium in the N2‐fixing legume–rhizobia symbiosis. Plant cell & Environment, 26(11), 1905-1915. https://doi.org/10.1046/j.1365-3040.2003.01107.x
Sara, S., Morad, M. & Reza, C. M. (2013). Effects of seed inoculation by Rhizobium strains on chlorophyll content and protein percentage in common bean cultivars (Phaseolus vulgaris L.). International Journal of Biosciences, 3(3), 1-8. doi: http://dx.doi.org/10.12692/ijb/3.3.1-8
Sharma, A. & Sharma, R. P. (2016). Effects of boron and lime on productivity of garden pea under acidic soils in Northwestern Himalayas. Communications in Soil Science and Plant Analysis, 47(3), 291-297. doi.org/10.1080/00 103624.2015.1122798
Siddique, A., Kandpal, G. & Kumar, P. (2018). Proline accumulation and its defensive role under diverse stress conditions in plants: An overview. Journal of Pure and Applied Microbiology, 12(3), 1655-1659. doi.org/10.22207/JPAM.12.3.73
Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H. & Bie, Z. (2018). Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), 1856. doi.org/10.3390/ijms19071856
Vitry, V., Kanta, A. F. & Delaunois, F. (2010). Initiation and formation of electroless nickel–boron coatings on mild steel: Effect of substrate roughness. Materials Science and Engineering: B, 175(3), 266-273. doi.org/10.1016/j.mseb.2010.08.003
Wang, Q., Liu, J. & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 9, 313. doi.org/10.3389/fpls.2018.00313
Wheatley, R. M., Ford, B. L., Li, L., Aroney, S. T., Knights, H. E., Ledermann, R. & Poole, P. S. (2020). Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. Proceedings of the National Academy of Sciences, 117(38), 23823-23834. doi: 10.1073/pnas.2009094117