Cendrayan Kasilingam Arisiyappan Thirunavukkarasu Chandran Ramachandran https://orcid.org/0000-0001-9664-1504


The demand for iron ore has increased recently and employing geochemical and hyperspectral remote sensing techniques for discovering new ore and mineral resources have primarily been concentrated on the economic phases. The present study aimed to characterize the hyperspectral spectral signatures of iron ores of field samples to map the deposits that occurred in the Tirthamalai hill region, which lies in the parts of Harur Taluk, Dharmapuri district of Tamil Nadu state, India The measurement and study of spectral signatures of the different samples of the deposits showed strong spectral absorptions near 500 nm, 900 nm and 2400 nm wavelength regions and were confirmed with the Fourier Transform Infrared (FTIR) spectroscopy method. The spectral absorption characteristics of the samples were evaluated by the study of the physical, optical, and chemical characteristics of the samples. The study of hyperspectral and FTIR spectral signatures with petrographic and major chemical elements revealed the best absorption characteristics of the iron ore deposits of the study region and can be used elsewhere in the world. This report presents preliminary findings on the use of hyperspectral imaging to characterize iron ore. The mineralogical products produced from hyperspectral images may improve in situ grade control on an iron ore mine face. It will be extremely useful for businesses in measuring large numbers of commodities quickly and objectively.




FTIR, Geochemistry, Iron Formation, Spectral Signatures, Tirthamalai region

Abubakar, A. J. A. Hashim, M. & Pour, A. B. (2019). Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: a case study from Yankari Park, NE Nigeria. Geocarto International, 34(6), 597-625. https://doi.org/10.1080/10106049.2017.1421716
Akinribide, O. J. Mekgwe, G. N. Akinwamide, S. O. Gamaoun, F. Abeykoon, C. Johnson, O. T. & Olubambi, P. A. (2022). A review on optical properties and application of transparent ceramics. Journal of Materials Research and Technology. 21, 712-738. https://doi.org/10.1016/j.jmrt.2022.09.027
Baissa, R. Labbassi, K. Launeau, P. Gaudin, A. & Ouajhain, B. (2011). Using HySpex SWIR-320m hyperspectral data for the identification and mapping of minerals in hand specimens of carbonate rocks from the Ankloute Formation (Agadir Basin, Western Morocco). Journal of African Earth Sciences, 61(1), 1-9. https://doi.org/10.1016/j.jafrearsci.2011.04.003
Bodsworth, C. (2018). The extraction and refining of metals. Routledge. https://doi.org/10.1201/9780203736722
Chellamuthu Ranganathan, P. & Siddan, A. (2021). Application of spectral signature to analyze quality of magnesite ore mineral deposits and altered rocks of Salem, India. Arabian Journal of Geosciences, 14(7), 1-20. https://doi.org/10.1007/s12517-021-06963-1
Dibb, S. D., Bell III, J. F., & Garvie, L. A. (2022). Spectral reflectance variations of aubrites, metal‐rich meteorites, and sulfides: Implications for exploration of (16) Psyche and other “Spectrally featureless” asteroids. Meteoritics & Planetary Science, 57(8), 1570-1588. https://doi.org/10.1111/maps.13891
Fallacaro, A. & Calvin, W. (2003, July). Spectral and chemical characteristics of Lake Superior banded iron formation: Analog for Martian hematite outcrops. In Sixth International Conference on Mars (p. 3067).
Frei, M., Schodlok, M. C., Blumberg, A., & Altermann, W. (2018, December). Hyperspectral Imaging Airborne Campaign (VNIR-SWIR-TIR) in South Africa-Mineral resources applications. In AGU Fall Meeting Abstracts (Vol. 2018, pp. GC12A-04).
Ganesh, B. P. Aravindan, S. Raja, S. & Thirunavukkarasu, A. (2013). Hyperspectral satellite data (Hyperion) preprocessing – a case study on banded magnetite quartzite in Godumalai Hill, Salem, Tamil Nadu, India. Arabian Journal of Geosciences, 6(9), 3249-3256. https://doi.org/10.1007/s12517-012-0584-8
Gholizadeh, A., Neumann, C., Chabrillat, S., van Wesemael, B., Castaldi, F., Borůvka, L., ... & Hohmann, C. (2021). Soil organic carbon estimation using VNIR–SWIR spectroscopy: The effect of multiple sensors and scanning conditions. Soil and Tillage Research, 211, 105017. https://doi.org/10.1016/j.still.2021.105017
Horgan, B. H. Cloutis, E. A. Mann, P. & Bell III, J. F. (2014). Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus, 234, 132-154. https://doi.org/10.1016/j.icarus.2014.02.031
Izenberg, N. R. Klima, R. L. Murchie, S. L. Blewett, D. T. Holsclaw, G. M. McClintock, W. E. ... & Dyar, M. D. (2014). The low-iron, reduced surface of Mercury as seen in spectral reflectance by messenger. Icarus, 228, 364-374. https://doi.org/10.1016/j.icarus.2013.10.023
Jablonska, M. Rachwal, M. Wawer, M. Kadziolka-Gawel, M. Teper, E. Krzykawski, T. & Smolka-Danielowska, D. (2021). Mineralogical and chemical specificity of dusts originating from iron and non-ferrous metallurgy in the light of their magnetic susceptibility. Minerals, 11(2), 216. https://doi.org/10.3390/min11020216
Jha, E. (2021). Studies on Utilization and Recycling of Steel Plant Fines by Agglomeration (Doctoral dissertation, Maharaja Sayajirao University of Baroda -India).
Johnson, J. R. Bell III, J. F. Bender, S. Blaney, D. Cloutis, E. Ehlmann, B. ... & Wiens, R. C. (2016). Constraints on iron sulfate and iron oxide mineralogy from ChemCam visible/near-infrared reflectance spectroscopy of Mt. Sharp basal units, Gale Crater, Mars. American Mineralogist, 101(7), 1501-1514. https://doi.org/10.2138/am-2016-5553
Kanth, A. P. & Ganaraj, K. (2022). Spectroscopic and x-ray based microstructural investigation of the early-harappan potsherds and estimation of firing temperature from Kunal Archaeological site, India. International Journal of Conservation Science, 13(1), 131-146.
Khan, M. J. Khan, H. S. Yousaf, A. Khurshid, K. & Abbas, A. (2018). Modern trends in hyperspectral image analysis: A review. Ieee Access, 6, 14118-14129. https://doi.org/10.1109/ACCESS.2018.2812999
Kumar, C., Shetty, A., Raval, S., Sharma, R. & Ray, P. C. (2015). Lithological discrimination and mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth and Planetary Science, 11, 180-188. https://doi.org/10.1016/j.proeps.2015.06.022
Libeesh, N. K. Naseer, K. A. Arivazhagan, S. Mahmoud, K. A. Sayyed, M. I. & Alqahtani, M. S. (2022). Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes. The European Physical Journal Plus, 137(2), 267. https://doi.org/10.1140/epjp/s13360-022-02473-5
Ortenberg, F. (2018). Hyperspectral sensor characteristics: Airborne, spaceborne, hand-held, and truck-mounted; integration of hyperspectral data with Lidar. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation (pp. 41-69). CRC Press.
Panda, S., Jain, M. K., Jeyaseelan, A. T. & Banerjee, K. (2021). Satellite image derived spectral modeling to assess the grades of hematite deposits: a study on Noamundi area in West Singhbhum district, Jharkhand. Geocarto International, 36(3), 299-319. https://doi.org/10.1080/10106049.2019.1594395
Prasanna, M. V., Chidambaram, S., Nagarajan, R., Elayaraja, A., & Rajalingam, S. (2009). A Study on Trace Metal Pollution in the Gadilam River Basin, Tamil Nadu, India. Recent Trends In Water Research-Hydrogeochemical And Hydrological Perspective, 67-73.
Raja, S. Rajendran, S. Ganesh, P. B. & Thirunavukkarasu, A. (2010). Study on hyperspectral signatures for magnetite iron ore in Thattayengerpet region of Trichirappalli district in Tamil Nadu State, India. International Journal of Geomatics and Geosciences, 1(2), 188.
Rajendran, S. & Nasir, S. (2014). Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite–magnetite–awaruite occurrences in Wadi Hibi, Northern Oman Mountain: Discrimination through ASTER mapping. Ore Geology Reviews, 62, 211-226. https://doi.org/10.1016/j.oregeorev.2014.03.016
Rajendran, S. & Nasir, S. (2019). ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geology Reviews, 108, 33-53. https://doi.org/10.1016/j.oregeorev.2018.04.014
Rajendran, S. Thirunavukkaraasu, A. Poovalingaganesh, B. Kumar, K. V. & Bhaskaran, G. (2007). Discrimination of low-grade magnetite ores using remote sensing techniques. Journal of the Indian Society of Remote Sensing, 35(2), 153-162.
Rajendran, S. Thirunavukkarasu, A. Balamurugan, G. & Shankar, K. (2011). Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. Journal of Asian Earth Sciences, 41(1), 99-106. https://doi.org/10.1016/j.jseaes.2011.01.004
Roonwal, G. S. (2018). Mineral exploration:Practical application. Springer Singapore.
Sahoo, S. K. & Hota, G. (2018). Surface functionalization of GO with MgO/MgFe2O4 binary oxides: a novel magnetic nanoadsorbent for removal of fluoride ions. Journal of Environmental Chemical Engineering, 6(2), 2918-2931. https://doi.org/10.1016/j.jece.2018.04.054
Santosh, M. Maruyama, S. & Sato, K. (2009). Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India?: Gondwana Research, v. 16, p. 321-341. https://doi.org/10.1016/j.gr.2008.12.012
Santosh, M. Yang, Q.Y. Shaji, E. Tsunogae, T. Mohan, M.R. & Satyanarayanan, M. (2015). An exotic Mesoarchean 739 microcontinent: the Coorg Block, southern India. Gondwana Research, 27(1): 165–195. https://doi.org/10.1016/j.gr.2013.10.005
Sylvestre, G. Laure, N. T. E. Djibril, K. N. G. Arlette, D. S. Cyriel, M. Timoleon, N. & Paul, N. J. (2017). A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: constraints from petrography and geochemistry. Ore Geology Reviews, 80, 860-875. https://doi.org/10.1016/j.oregeorev.2016.08.021
Thangavelu, M. Shanmugam, S. & Bhattacharya, A. K. (2011). Hyperspectral radiometry to quantify the grades of iron ores of Noamundi and Joda mines, Eastern India. Journal of the Indian Society of Remote Sensing, 39(4), 473-483. https://doi.org/10.1007/s12524-011-0109-z
Thirunavukkarasu, A. Rajendran, S. Suresh, R. Sakthivel, C. Kasilingam, C. & Sankar, M. (2015). Geochemistry Of Iron Ore Deposits of Tirthamalai Area, Dharmapuri District, Tamilnadu, India-Implication on the Genesis. Journal of Applied Geochemistry, 17(4), 462-470.
Tsunogae, T. & Santosh, M. (2010). Sapphirine + quartz assemblage from the Southern Granulite Terrane, India: diagnostic evidence for ultrahigh-temperature metamorphism within the Gondwana collisional orogen. Geological Journal, https://doi.org/10.1002/gj.1244doi: 10.1002/gj.1244.
Research Articles

How to Cite

Spectral signatures for iron ore deposits in Tirthamalai area, Dharmapuri District, Tamil Nadu, India. (2023). Journal of Applied and Natural Science, 15(1), 107-115. https://doi.org/10.31018/jans.v15i1.4160