##plugins.themes.bootstrap3.article.main##

Sherin, H. M. Safar Mai, M. A. Gnedy Farag E. M

Abstract

Oils are some of the most efficient and secure alternatives to synthetic fungicides, acaricides and insecticides used as pesticides for decades. Around the world, mineral oils are a potential pesticide against many pests. To provide novel active ingredients and new pesticide formulations to the pesticide industry, the major goal of this research was to formulate one of the petroleum fractions and test its acaricidal efficiency against two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae). Solar's physical features were put to the test. Then, it was prepared as an emulsifiable concentrate following the guidelines provided by specialized pesticide organizations for this kind of formulation. The novel formulation was subsequently biologically tested against T. urticae adults in the lab, and it demonstrated good acaricidal activity with an LC50 of 4548 ppm. Under greenhouse conditions, it was also tested against T. urticae immature, adults (males and females) and number of deposited eggs. There was a direct correlation for all stages between concentration, the percentage of immature and adult mortality, and the percentage of egg-hatching inhibition. In the case of the immature, 100% mortality was shown after 7 days of treatment. However, in the case of adult males and females, 100% mortality was shown after 3 days of treatment. Additionally, after 14 days from treatment, it entirely stopped egg depositing. The new formulation might be applied to manage the TSSM.


 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biological efficiency, Emulsifiable concentrate, Formulation, Solar, Tetranychus urticae

References
Abd-Alla, H. I. & Hamouda, S. E. S. (2021). Study of potential activity of clove oil 10 % emulsifiable concentrate formulation on Two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Applied and Natural Science, 13(4), 1414 - 1419. https://doi.org/10.31 018/jans.v13i4.3124
Australian Pesticides Veterinary Medicines Authority (2015). Australian Pesticides Veterinary Medicines Authority (APVMA) for Guidelines of storage Validation of Analytical Methods. The data requirements that the APVMA adopts are derived from the ‘Manual on development and use of FAO and WHO specifications for pesticides’, 1st ed. 2002.
American Society of Testing Materials (2001). American Society of Testing Materials. Standard Test Method for Surface and Interfacial Tension of Solution D-1331.
American Society of Testing Materials (2005). American Society of Testing Materials Standard Test Method for Rheological Properties of Non – Newtonian Materials by Rotational (Brookfield type) Viscometer, D-2196 Copyright ASTM, Bar Harbor Drive, West Conshohocken, PA 19248-2959, United States.
Carmine, S. (2014).  Pesticide Formulation and Delivery Systems: 33rd Volume, “Sustainability: Contributions from Formulation Technology”. ASTM International, 185 p.
Chueca, P., Garcerá, C., Moltó, E., Jacas, J. A., Urbanega, A. & Pina. T. (2010): Spray deposition and efficacy of four petroleum-derived oils used against Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 103(2): 386 - 393. https://doi.org/10.1603/EC09242
Collaborative International Pesticides Analytical Council (1995) Physicochemical Methods for Technical and Formulated Pesticides, Printed in Great Britain by the Block Boar Press LTD. CIPAC Vol. F (1995). M46.1, Kings Hedges Cambridge CB492, England.
Dobrat W. and Martijn A. (1995). CIPAC Hand Book, Vol. F, Collaborative International Pesticides Analytical Council Limited.
El-Sharkawy R. A., Hamouda, S. E. S. & Elmasry, S. N. (2020). Formulation of the newly synthesized arylidene derivative as 10 % flowable and evaluation of their insecticidal efficacy on cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). Egyptian Journal of Plant Protection Research Institute, 3 (1), 433 - 443.
El-Sisi A., El-Mageed A., El-Asawi T. F. & El-Sharkawy R. (2011). Improvement the physico-chemical properties and efficiency of some insecticides formulation by using adjuvants against cotton laefworm Spodoptera littoralis (BOISD.). Journal of Plant Protection and Pathology, 2 (8), 757-764.
Finney, D. J. (1971). Probit Analysis, 3rd ed., Cambridge University Press, 32 E. 57th St., New York, Ny 10022, 1971. xv + 333 pp.  https://doi.org/10.1002/jps.2600600940
Food and Agricultural Organization, World Health Organization (2010). Manual on Development and Use of FAO and WHO Specifications for Pesticides, 1st Ed. 3rd Rev. FAO Plant Production and Protection, FAO, Rome.
Food and Agricultural Organization, World Health Organization (2002). Manual on Development and Use of Pesticides, prepared by FAO/WHO Joint Meeting on Pesticide Specifications (JMPS),1st Ed., Rom.
Griffin, W. C. J. (1954). Calculation of HLB Values of Nonionic Surfactants. J. Soc. Cosmet. Chem., 5: 249-56.
Hamouda, S. E. S., Abd-Alla, H. I. & Abd Elattif, N. S. (2022). Schiff base synthesis, formulation as emulsifiable concentrate and study its nematicidal efficiency on root-knot nematode Meloidogyne spp. under greenhouse conditions, International Journal of Agricultural Technology, 18(5), 1983 – 1994.
Hazra, D. K. & Purkait, K. (2019). Role of pesticide formulations for sustainable crop protection and environment management: A review. Journal of Pharmacognosy and Phytochemistry, 8(2): 686-693.
Hendrson, C. F. & Tilton, W. A. (1955). Test with acaricides against the wheat mite. J. Econ. Entomol. 48(2):157-161. https://doi.org/10.1093/jee/48.2.157
Isman, M. B. (2020). Bioinsecticides based on plant essential oils: a short overview, Zeitschrift für Naturforschung C; 75(7–8)c: 179–182. https://doi.org/10.1515/znc-2020-0038
Food and Agriculture Organization of the United Nations (2010). Manual on the development and use of FAO and WHO specifications for pesticides / prepared by the FAO/WHO Joint Meeting on Pesticide Specifications (1st ed.). JMPS Specifications, F. W. J. M. O. P., Food, Agriculture Organization of the United, N., & World Health, O., Rome: Food and Agriculture Organization of the United Nations.
Kah M., Beulke S., Tiede K. & Hofmann T. (2013). Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology. 43(16):1823-1867. https://doi.org/10.1080/10643389.2012.671750
Kavya Yadav, G. A. & Bhaskar, H. (2020). Efficacy of horticultural mineral oil against Tetranychus truncatus ehara, Indian Journal of Entomology, 82(1): 123-127. doi : 10.5958/0974-8172.2020.00027.9
Kirk, S.(2020). Essential oils for pest control, : https://www.researchgate.net/publication/345700251
Knowles A. (2008). Recent developments of safer formulations of agrochemicals. The Environmentalist.28: 35-44. doi 10.1007/s10669-007-9045-4
Lagaly, G. (2001). Pesticide–clay interactions and formulations. Applied Clay Science. 18(5-6),205-209. https://doi.org/10.1016/S0169-1317(01)00043-6
Lazarević, J., Jevremović, S., Kostić, I., Kostić, M., Vuleta, A., Jovanović, S. M. & Jovanović, D. S. (2020). Toxic, Oviposition deterrent and oxidative stress effects of Thymus vulgaris essential oil against Acanthoscelides obtectus, Insects, 11(9), 563; https://doi.org/10.3390/insects11090563
Lynch M. I. & Griffin W. C. (1974). Food Emulsions in: Emulsion Technology, by Lissant K. J., Marcell Decker, Inc., New York. Mukerjee, P. and K. J. Mysels (1971) Critical Micelle Concentration of Aqueous Surfactant Systems. National Bureau of Standards Washington DC, PP. 1-21.
Mead, H. M., El-Shafiey, S. N. & Sabry, H. M. (2016). Chemical constituents and ovicidal effects of mahlab, Prunus mahaleb L. kernels oil on cotton leafworm, Spodoptera littoralis (Boisd.) eggs, Journal of Plant Protection Research, 56 (3), 279-290. doi: 10.1515/jppr-2016-0044
Najar-Rodríguez, A. J., Walter, G. H. & Mensah, R. K. (2007). The efficacy of a petroleum spray oil against Aphis gossypii Glover on cotton. Part 1: Mortality rates and sources of variation. Pest Manag. Sci. 63(6), 586-595. doi: 10.1002/ps.1385.
Nelson, F. C., & Fiero, G. W. (1954). Pesticide formulations, a selected aromatic fraction naturally occurring in petroleum as a pesticide solvent. Journal of Agricultural and Food Chemistry, 2(14), 735-737. https://doi.org/10.1021/jf60034a005
Nikolova, I. M. & Georgieva, N. A. (2018). The effects of a synthetic insecticide and a mineral oil on alfalfa insect pests, Pestic. Phytomed. (Belgrade), 33(3-4), , 221–231. doi. https://doi.org/10.2298/PIF1804221N
Osipow L. I. (1964). Surface Chemistry Theory and Application. Reinhold Publishing Crop, New York, pp. 4736-4739.
Pereira V. J., da Cunha, J. P. A. R., de Morais, T. P., de Oliveira, J. P. R., & de Morais, J. B. (2016). Physical-chemical properties of pesticides: concepts, applications, and interactions with the environment. Bioscience Journal, 32 (3), 627-641. https://doi.org/10.14393/BJ-v32n3a2016-31533
Pree, D. J., Cole, K. J. & Fisher, P. A. (1989). Comparison of leaf disc and petri dish assays for the assessment of dicofol resistance in populations of European red mite from southern Ontario. The Canadian Entomologist 121.9 (1989): 771-776. doi:10.4039/ENT- 121771-9
Rakha, M., Bouba, N., Ramasamy, S., Regnard, J. & Hanson, P. (2017). Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet. Resources Crop Evol. 64(5):1011-1022. Doi:10.1007/s10722-016-0421-0
Roy, S., Rahman, A., Barua, A., Bora, F. R., Handique, G. & Pujari, D. (2015). Evaluation of petroleum based horticulture oil for the management of the Tea Red Spider Mite, Oligonychus coffeae Neitner (Acarina: Tetranychidae), Acta Phytopathologica et Entomologica Hungarica, 50 (1), 127–138 doi: 10.1556/APhyt.50.2015.1.12
Sandeepa A. R, Pradeep S., Thara K. T. & Sridhara S. (2019). Biology of Tetranychus urticae Koch (Acarina: Tetranychidae) on carnation under laboratory condition. Journal of Entomology and Zoology Studies. 7(1): 1394-1398
Seham, I. (2021). Botanical insecticides & mineral oils synergize toxicity of imidacloprid against Bemisia tabaci (Hemiptera: Aleyrodidae), Progress in Chemical and Biochemical Research, 4(3), 295-304. doi: 10.22034/pcbr.2021.270061.1176
Soliman N. M. T. (2005). Evaluation the Pesticidal Action of Some Formulation of Plant Extracts; 111 PP. MS.C. Thesis, Institute of Environmental Studies and Research, Ain Shams University.
Spanoghe, P., De Schampheleire, M., Van der, M.P. & Steurbaut, W., (2007): Influence of agricultural adjuvants on droplet spectra. Pest Management Science: formerly Pesticide Science, 63 (1), 4-16. https://doi.org/ 10.1002/ps.1321
Stadler, T. & Buteler, M. (2009). Modes of entry of petroleum distilled spray-oils into insects: a review. B. Insectol. 62(2), 169-177.
Stejskal, V., Vendl, T., Aulicky, R. & Athanassiou, C. (2021). Synthetic and natural insecticides: gas, liquid, gel and solid formulations for stored-product and food-industry pest control, Insects , 12(7), 590; https://doi.org/10.3390/insects12070590
Taha, H. A., Amer, A. I. & Heba M. N. (2019). Alternative methods in the control of the two spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae) on soybean plants. Menoufia J. Plant Prot. 4(3): 99-106. doi: 10.21608/MJAPAM.2019.118008
Taverner, P. (2002). Drowning or just waving? A perspective on the ways petroleum-based oils kill arthropod pests of plants. In: G. A. C. Beattie, D. M. Watson, M. L. Stevens, D. J. Rae and R. N. Spooner-Hart (eds): Spray Oils Beyond 2000. Univ. of Western Sydney Press, Australia pp. 78-87.
Taverner, P. D., Gunning, R. V., Kolesik, P., Bailey, P. T., Inceoglu, A. B., Hammock, B. & Roush, R. T. (2001). Evidence for direct neural toxicity of “light” oil on the peripheral nerves of lightbrown apple moth. Pestic. Biochem. Physiol. 69(3), 153-165. https://doi.org/10.1006/pest.2000.2527
Taverner, P., Bailey, P., Hodgkinson, M. & Beattie, G. A. C. (1999). Postharvest disinfestations of lightbrown apple moth, Epiphyas postvittana Walker (Lepidoptera. Tortricidae), with an alkane. Pestic. Sci., 55, 1159-1166. doi10.1002/(SICI)1096-9063(199912)55:12<1159::AID-PS74>3.0.CO;2-L
Thomas, R. F. & Denmark, H. A. (2016). Two spotted Spider Mite, Tetranychus urticae Koch (Arachnida: Acari: Tetranychidae), UF, IFAS Extension, 1-5 http://entnemdept.ifas.ufl.edu/creatures/.
Valizadeh, B., Sendi, J. J., Oftadeh, M., Ebadollahi, A. & Krutmuang, P. (2021). Ovicidal and Physiological Effects of Essential Oils Extracted from Six Medicinal Plants on the Elm Leaf Beetle, Xanthogaleruca luteola (Mull.), Agronomy , 11(10), 2015; https://doi.org/10.3390/agronomy11102015
Van Leeuwen, T., Vontas, J., & Tsagkarakou, A., Tirry. L. (2009). Mechanisms of acaricide resistance in the two spotted spider mite Tetranychus urticae, pp. 347-393. Biorational Control of Arthropod Pests. doi:10.1007/978-90-481-2316-2_14
Vassiliou A. V. & Kitsis, P. (2013). Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cypru. J. Econ. Entomol. 106(4). 1848-1854 (2013); doi: http://dx.doi.org/10.1603/EC12369
World Health Organization, (1979). Specification of Pesticides Used in Public Health, WHO 5th Ed. Geneva.
Citation Format
How to Cite
Safar, S. H. M., Gnedy , M. M. A., & E. M, F. (2022). Acaricidal efficiency of solar 50 % new emulsifiable concentrate formulation against the two-spotted spider mite (TSSM) Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory and greenhouse conditions. Journal of Applied and Natural Science, 14(4), 1456–1464. https://doi.org/10.31018/jans.v14i4.4061
More Citation Formats:
Section
Research Articles