Molecular detection of extended spectrum ß-lactamase genes in Escherichia coli isolates from urinary tract infected patients
Article Main
Abstract
Extended-spectrum ß-lactamases (ESBL) are a major source of concern. ESBL have been recorded around the world. Globally, the number of people infected with Enterobacteriaceae that produce extended-spectrum beta-lactamase (ESBL) is on the rise. It has been a rise in resistance to ß-lactam antibiotics among them. In this study, the objective was to collect Escherichia coli isolates from Urinary tract infection patients using selective medium, determine the prevalence of ESBL-producing E. coli, phylogenetic groupings of isolates, ESBL production, and biofilm formation among the isolates of E. coli isolates. The study included 250 E. coli samples from male and female subjects and grown on a selective medium. The isolated bacteria were submitted to different tests, including the detection of biofilm development and testing of the phylogenetic grouping of the E. coli isolate using triplex-PCR analysis. Representatives of each isolate were phenotypically evaluated for antibiotic resistance and classified into phylogenetic groupings. The results of extended-spectrum ß -lactams antibiotics showed the greatest resistance levels. There were 100% resistance rates for Ceftazidime-Clavulantae (CZC) and Cefotaxime-Clavulantae (CTC), 78.7% for Ceftazidime (CAZ), 86.7% for Cefotaxime CTX, 84% for Aztreonam (ATM), 87.3% for Ceftriaxone (CRO) and 83.3% for Cefpodoxime (CPD). E. coli isolates belonging to phylogroup B2 (91, 91%), and subtyping B23 (75, 75%) were the most common among UTI patients. ESBL-producing E. coli isolates were prevalent in individuals with UTIs. Most E. coli isolates from UTI patients at Al-Hillah hospitals belonged to phylogroup B2, followed by D, B1, and A. B2 was the most prevalent group in the study. This study examined the dissemination of ESBL genes in phylogenetic groups of the E. coli isolates from UTIs patients in the Al-Hillah, Iraq.
Article Details
Article Details
Biofilm formation, Escherichia coli, Extended spectrum ß -lactams Phylogenetic groups, Uropathogenic
Abbas, F.A. (2016). Phenotypic detection of extended spectrum β-lactamases producing Klebsiella and Enterobacter spp. among patients with lower respiratory tract infections in Babylon province-Iraq. Journal of International Academic Research for Multidisciplinary, 4(8): 24-28.
Abbas, F.A. (2019). Molecular detection of CTX-M extended spectrum betalactamase among carbapenem-resistant Klebsiella pneumoniae from Al-Hillah Teaching Hospital environment, Babylon Province, Iraq. Journal of Physics: Conference Series 1294 (2019) 062044.
Alwash, M. S. & Al-Rafyai, H. M. (2019). Antibiotic resistance patterns of diverse Escherichia coli phylogenetic groups isolated from the Al-Hillah River in Babylon Province, Iraq. Scientific World Journal, doi.org 10.1155/20 19/5927059.
Bush, K. & Fisher, J. F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual Review of Microbiology, 65, 455-478.
Chandel, D. S., Johnson, J. A., Chaudhry, R., Sharma, N., Shinkre, N., Parida, S., Misra, P. R & Panigrahi, P. (2011). Extended-spectrum β-lactamase-producing Gram-negative bacteria causing neonatal sepsis in India in rural and urban settings. Journal of Medical Microbiology, 60(4), 500-507.
Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. (2013). The Clermont Escherichia coli phylo‐typing method revisited: Improvement of specificity and detection of new phylo‐groups. Environmental Microbiology Reports, 5(1), 58-65.
Clinical and Laboratory Standards Institute (2014). Performance Standards for Antimicrobial Susceptibility Testing Twenty-Fourth Informational Supplement. CLSI document M100-S24, Clinical and Laboratory Standards Institute, Wayne, PA, USA
Clinical and Laboratory Standards Institute (2020), Performance Standards for Antimicrobial Susceptibility Testing Thirtieth Informational Supplement. Contact .AJVS.
Ejaz, H., Younas, S., Abosalif, K. O.A., Junaid, K., Alzahrani, B., Alsrhani, Abdalla, A.E., Ullah, M.I., Qamar, M.U. &, Hamam, S. S. M. (2021). Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. Plos One, 16(1), e0245126.
Foxman, B. (2014). Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics of North America. Infectious Disease, 28(1),1-13.
Giufre, M., Mazzolini, E., Cerguetti, M., Brusaferro, S. & CCM2015 One-Health ESBL-producing Escherischia coli study group (2021). Extended-spectrum ß-lactamase-producing Esherischia coli from extraintestinal infections in humans and from food–producing animals in Italy: “One Health study”. International Journal of Antimicrobial Agents, 58(5), 106433.
Jain A. & Agarwal, A. (2009) Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. Journal of Microbiological Methods 76(1),88–92.
Javed, S., Mirani, Z. A. & Pirzada, Z. A. (2021). Phylogenetic Group B2 Expressed Significant Biofilm Formation among Drug Resistant Uropathogenic Escherichia coli. Libyan Journal of Medicine, 16(1), 1845444.
Klein, R. D. & Hultgren, S. J. (2020). Urinary tract infections: Microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nature Reviews of Microbiology, 18(4), 211-226.
Kumar, M. S. (2021).Antibiotic susceptibility profile of extended spectrum ß-lactamase producing Esherichia coli, Klebsiella pneumonia and Klebsiella oxytoca from from Urinary tract infections. Research Journal of Pharmacy and Technology, 14(8), 4425-4428.
Lal, A. & Cheeptham, N. (2007). Eosin-methylene blue agar plates protocol. American Society for Microbiology.
Lindblom, A. (2020). Recurrent infection with Extended-Spectrum Beta-Lactamase (ESBL)-producing Enterobacteriaceae.
Lin, W. H., Wang, M. C., Liu, P. Y., Chen, P. S., Wen, L. L., Teng, C. H. & Kao, C. Y. (2022). Escherichia coli urinary tract infections. Host age-related differencesin bacterial virulence factors and antimicrobial susceptibility. Journal of Microbiology, Immunology. and Infection, 55(2), 249-256.
MacFaddin, J.E. (2000). Individual Biochemical Tests For Identification of Medical Bacteria. 3th ed. Lippincott Williams Wilkins, London.:57-424.
Mahmoud, A. T., Salim, M. T., Ibrahem, R. A., Gabr, A. & Halby, H. M. (2020). Multiple drug resistance patterns in various phylogenetic groups of hospital acquired uropathogenic E.coli isolated from cancer patients. Antibiotics, 9(3), 108.
Moehario, L. H., Tjoa, E., Putranata, H., Joon, S., Edbert, D. & Robertus, T. (2021). Performance of TDR-300B and VITEK®2 for the identification of Pseudomonas aeruginosa in comparison with VITEK®-MS. Journal of International Medical Research, 49(2),300060521989893.
Mohsenzadeh, A., Fazel, A., Bavari, S., Borji, S., Pourasghar, S., Azimi, T. & Sabati, H. (2021). Detecting of biofilm formation in the clinical isolates of Pseudomonas aeruginosa and Escherichia coli: An evaluation of different screening methods. Journal of Current Biomedical Reports, 2(2), 56-61.
Murray, P. R., Rosenthal, K. S. & Pfaller, M. A. (2020). Medical microbiology e-book. Elsevier Health Sciences.
Nielsen, D. W., Klimavicz, J. S., Cavender, T., Wannemuehler, Y., Barbieri, N. L., Nolan, L. K. & Logue, C. M. (2018). The impact of media, phylogenetic classification, and E.coli pathotypes on biofilm formation in extraintestinal and commensal E.coli from humans and animals. Frontiers in Microbiology, 9, 902. DOI: 10.3389/fmicb.2018.00902.
Nji, E., Kazibwe, J., Hambridge, T., Joko, C. A., Larbi, A. A., Damptey, L. A. O., ... & Lien, L. T. Q. (2021). High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Scientific Reports, 11(1), 1-11.
Olowe, O. A., Adefioye, O. J., Ajayeoba, T. A., Schiebel, J., Weinreich, J., Ali, A.,Burdukiewicz, M., Rödiger, S. & Schierack, P. (2019). Phylogenetic grouping and biofilm formation of multidrug resistant Escherichia coli isolates from humans, animals and food products in South-West Nigeria. Scientific African, 6, e00158.
Pandey, N. & Cascella, M. (2021) Beta Lactam Antibiotics. In: Stat Pearls [Internet]. Treasure Island (FL): Stat Pearls Publishing; 2021 Jan.
Paterson, D. L. & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657-686.
Pootong, A., Mungkornkeaw, N., Norrapong, B. & Cowawintaweewat, S. (2018). Phylogenetic background, drug susceptibility and virulence factors of uropathogenic E.coli isolate in a tertiary university hospital in central Thailand. Tropical Biomedicine, 35(1), 195-204.
Pormohammad, A., Nasiri, M. J. & Azimi, T. (2019). Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A Systematic Review And Meta-Analysis. Infection And Drug Resistance, 12, 1181-1197.
Sharma, M., Aparna, Yadav, S. & Chaudhary., U. (2009). Biofilm production in uropathogenic Esherichia coli. Indian Journal of Pathology and Microbiology ,52(2),294.
Sharma, N., Gupta, A., Walia, G. and Bakhshi, R. (2016). Pattern of Antimicrobial Resistance of Escherichia coli Isolates from Urinary Tract Infection Patients: A Three Year Retrospective Study. Journal of Applied Pharmaceutical Science, 6(01), 062-065.
Subramanian, P., Shanmugam, N., Sivaraman, U., Kumar, S. & Selvaraj, S. (2012). Antiobiotic resistance pattern of biofilm-forming uropathogens isolated from catheterised patients in Pondicherry, India. Australasian Medical Journal, 5(7), 344-348.
Suman, E., Jose, J., Varghese, S. & Kotian, M. S. (2007). Study of biofilm production in Escherichia coli causing urinary tract infection. Indian Journal of Medical Microbiology, 25(3), 305-306.
Teklu, D. S., Negeri, A. A., Legese, M. H., Bedada, T. L., Woldemariam, H. K. & Tullu,K. D. (2019). Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance and Infection Control, 8(1), 39.
Terlizzi, M. E., Gribaudo, G. & Maffei, M. E. (2017). Uropathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Frontiers in Microbiology, 8, 1566.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)