##plugins.themes.bootstrap3.article.main##

M. M. Mawtham https://orcid.org/0000-0002-6358-8919 Bhuvaneswari Kaithamalai Suganthi Angappan S. Kulanthaisami

Abstract

Imidacloprid is a broad-spectrum neonicotinoid class insecticide with systemic action, widely used on vegetables in India for the management of sucking insect pests. The overall pesticide usage profile in gourds growing districts of Tamil Nadu showed that imidacloprid as the most commonly used insecticide. The present study aimed to develop and validate an analytical approach for detecting imidacloprid and 6-chloronicotinic acid residues in bitter gourd fruit, juice and soil using LC-EI-MS (liquid chromatography coupled with electron ionization mass spectrometry) was undertaken. The persistence pattern, effect of household processing and risk assessment of imidacloprid on bitter gourd was studied by conducting field trials at single and double doses of 20 and 40 g a.i ha-1. Calibration curves showed a good linear relationship (r2>0.99) with the concentrations (0.0025–0.5 µg mL-1) of imidacloprid and 6-chloronicotinic acid. The limit of detection and quantification of the method were 0.008 and 0.025 mg kg-1, respectively. Accuracy of imidacloprid and 6-chloronicotinic acid residue recovery was in the range of 88–101 per cent with RSD of less than six per cent in all the matrices of bitter gourd. Initial deposits of imidacloprid at 20 and 40 g a.i ha-1 were 0.68 and 1.25 mg kg-1 and the residues persisted up to 10 and 15 days with their respective half-lives of 2.51 and 3.13 days. Simple decontamination techniques showed 33 to 80 per cent reduction of residues in samples collected up to 10 days after treatment. The estimated RQ was less than one indicating the level of risk to the consumer is negligible.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Bitter gourd, Decontamination, Dissipation, Imidacloprid, LC-MS

References
Anastassiades, M., Lehotay, S. J., Stajnbaher, D. & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412-431. https://doi.org/10.1093/jaoac/86.2.412.
Badawy, M. E., Ismail, A. M. & Ibrahim, A. I. (2019). Quantitative analysis of acetamiprid and imidacloprid residues in tomato fruits under greenhouse conditions. Journal of Environmental Science and Health, Part B; Pesticides, Food Contaminants, and Agricultural Wastes, 54(11), 898-905. https://doi.org/10.1080/03601234.201 9.1641389.
Cabrera, C. L. & Pastor, M. P. (2021). European Union report on pesticide residues in food, European Food Safety Authority. EFSA Journal, 19(1), e06374. https://doi.org/10.2903/j.efsa.2021.6491.
Casida, J. E. (2018). Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annual Review of Entomology, 63, 125-144. https://doi.org/10.1146/annurev-ento-020117-043042.
Central Insecticides Board and Registration Committee (2021). Directorate of Plant Protection, Quarantine & Storage, Ministry of Agriculture & Farmers Welfare, Haryana, India. (2021). Retrieved from http://ppqs.gov.in/sites/default/files/major_use_of_pesticides _insecticides_as_on_31.05.2022.pdf.
Codex Alimentarius Commission. (2016). Retrieved from https://www.fao.org/fao-who-codex alimentarius/codex-texts/dbs/pestres/pesticides/en/.
Dharumarajan, S. & Dikshit, A. K. (2010). Effect of Household Processing on Reduction of Combination-mix (β-Cyfluthrin+ lmidacloprid) Residues on Tomato (Lycopersicon esculentum Mill.). Pesticide Research Journal, 22(1), 32-34.
Dong, M., Wen, G., Tang, H., Wang, T., Zhao, Z., Song, W. & Zhao, L. (2018). Dissipation and safety evaluation of novaluron, pyriproxyfen, thiacloprid and tolfenpyrad residues in the citrus-field ecosystem. Food chemistry, 269, 136-141. https://doi.org/10.1016/j.foodchem.2018.07.005.
Finizio, A., Vighi, M. & Sandroni, D. (1997). Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere. 34(1), 131-161. https://doi.org/10.1016/S0045-6535(96)00355-4.
Han, W., Tian, Y. & Shen, X. (2018). Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere, 192, 59-65. https://doi.org/10.1016/j.chemosphere.2017.10.149.
Handa, S., Agnihotri, N. & Kulshrestha, G. (1999). Maximum residue limits of pesticides. Pesticide Residues Significance, Management and Analysis. Research periodicals and book publishing House, Houston.
Hendawi, M. Y., Romeh, A. A. & Mekky, T. M. (2018). Effect of food processing on residue of imidacloprid in strawberry fruits. Journal of Agricultural Science and Technology, 15, 951-959. http://hdl.handle.net/123456 789/4406.
Hoskins, W. M. (1996). Mathematical treatment of the rate of loss of pesticide residues. FAO Plant Protection Bulletin, 19(163168), 214-215.
Joshi, H., Thanki, N. & Joshi P. (2015). Effect of household processing on reduction of pesticide residues in garden pea (Pisum Sativum). International Journal of Applied Science, 2(5), 87-93.
Karthik, P., Venugopal, S., Murthy, K. D., Lokesh, S., Karthik, G., Sharmila, U. & Kuttalam, S. (2015). Bioefficacy, phytotoxicity, safety to natural enemies and residue dynamics of imidacloprid 70 WG in okra (Abelmoschus esculenta (L) Moench) under open field conditions. Crop Protection, 71, 88-94. https://doi.org/10.1016/j.crop ro.2015.01.025.
Kwon, H., Kim, T. K., Hong, S. M., Se, E. K., Cho, N. J. & Kyung, K. S. (2015). Effect of household processing on pesticide residues in field-sprayed tomatoes. Food Science and Biotechnology, 24(1), 1-6. https://doi.org/10. 1007/s10068-015-0001-7.
Lavtizar, V., Gestel, C. A., Dolenc, D. & Trebse, P. (2014). Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products. Chemosphere, 95, 408-414. https://doi.org /10.10 16/j.chemosphere.2013.09.057.
Li, Z., Aolei, X., Shiming, L., Guliang, Y., Weibin, J., Mingju, Z. & Shuzhen, W. (2020). The pharmacological properties and therapeutic use of bitter melon (Momordica charantia L.). Current Pharmacology Reports, 6(3), 103-109. https://doi.org/10.1007/s40495-020-00219-4.
Majed, L., Hayar, S., Zeitoun, R., Maestroni, B. M. & Dousset, S. (2021). The effects of formulation on imidacloprid dissipation in grapes and vine leaves and on required pre-harvest intervals under Lebanese climatic conditions. Molecules, 27(1), 252. https://doi.org/10.3390/molecules27010252.
Malhat, F., Bakery, M., Anagnostopoulos, C., Youssef, M., Abd El-Ghany, W., Abdallah, A. & Abd El-Salam, S. (2021). Investigation of the dissipation behaviour and exposure of spitotetramat, flonicamid, imidacloprid and pymetrozine in open field strawberries in Egypt. Food Additives & Contaminants: Part A, 38(12), 2128-2136. https://doi.org/10.1080/19440049.2021.1973113.
Mariappan, P. & Kaithamalai, B. (2020). Dissipation kinetics, decontamination and risk assessment of chlorantraniliprole in okra and soil under open field condition using GC-MS. International Journal of Environmental Analytical Chemistry, 1-13. https://doi.org/10.1080/030673 19.2020.1772776.
Mawtham, M. M., Gailce, L. J. C. & Sheeba J. R. S. (2020). Seasonal fluctuations and management of sucking insect pests on bitter gourd (Momordica charantia L.). Indian Journal of Agricultural Research, 1, 6-15.
Mohapatra, S., Deepa, M., Lekha, S., Nethravathi, B., Radhika, B. & Gourishanker, S. (2012). Residue dynamics of spirotetramat and imidacloprid in/on mango and soil. Bulletin of Environmental Contamination and Toxicology, 89(4), 862-867. https://doi.org/10.1007/s00128-012-0762-0.
Nasr, H. M. Abbassy, M. A., Marzouk, M. A. & Mansy, A. S. (2014). Determination of imidacloprid and tetraconazol residues in cucumber fruits. Journal of Pollution Effects & Control, 2(1), 1-5.
National horticulture board (2020). Ministry of Agriculture & Farmers Welfare, Government of India. (2020). Retrieved from http://nhb.gov.in/StatisticsViewer.aspx?enc= MWoUJibk35dW2g36TUJWAoZqESmAYFi7h2irlsmjlINT cFl1rG/kLbq8ZQbWUvuM.
National Institute of Nutrition. (2020). Expert group on nutrient requirement for Indians, Recommended dietry allowances (RDA) and estimated average requirements (EAR), Department of Health Research, Hyderabad, India. Retrieved from https:// www. nin.res .in/RDA _short _Report_2020.html.
Nowowi, M. F. M., Ishak, M. A. M., Ismail, K. & Zakaria, S. R. (2016). Study on the effectiveness of five cleaning solutions in removing chlorpyrifos residues in cauliflower (Brassica oleracea). Journal of Environmental Chemistry and Ecotoxicology, 8(7), 69-72. https://doi.org/10.5897/JECE2015.0370.
Pesticide Properties DataBase (2022). Pesticide Properties DataBase (PPDB). Agriculture and Environment Research Unit. Hertfordshire, UK. Retrieved from http://sitem.herts.ac.uk/aeru/ppdb /en/Reports /397.htm.
Sahoo, S. K., Chahil, G. S., Kousik, M., Battu, R. S. & Balwinder, S. (2012). Estimation of β-cyfluthrin and imidacloprid in okra fruits and soil by chromatography techniques. Journal of Environmental Science and Health, Part B; Pesticides, Food Contaminants, and Agricultural Wastes, 47(1), 42-50. https://doi.org/10.1080/0360123 4.2012.607765.
Samadov, B. S. (2022). The chemical composition of the medicinal plant Momordica charantia used in folk medicine. Thematics Journal of Chemistry, 6(1), 35-51. https://doi.org/ 10.5281/zenodo.6954675.
SANTE. 2021. Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/12682/2019. Retrieved from https://food.ec.europa.eu/system/files/20 22-02/pesticides_mrl_guidelines_wrkdoc_2021-113 12.pdf.
Scholz, R., Herrmann, M., Michalski, B. (2017). Compilation of processing factors and evaluation of quality-controlled data of food processing studies. J. Cons. Protec. Safety, 12(1), 3-4. 10.1007/s00003-016–1043-3.
Srinivasa, R. S., Narendra, R. C. & Shashi, V. (2018). Decontamination methods utilising house hold practices for removing pesticides on field bean for food safety. Journal of Nutritional Health & Food Engineering, 8(3), 260-267.
Yu, Y., Wang, S., Zhang, Q., Yang, Y., Chen, Y., Liu, X. & Lu, P. (2019). Dissipation, residues and risk assessment of imidacloprid in Zizania latifolia and purple sweet potato under field conditions using LC-MS/MS. Journal of Environmental Science and Health, Part B; Pesticides, Food Contaminants, and Agricultural Wastes, 5(4), 89-97. https://doi.org/10.1080/03601234.2018.1531661.
Zhuo, L., Jing, G., Wenya, H., Fuer, L. & Hui D. (2021). The Effect of Momordica charantia in the treatment of Diabetes mellitus: A Review. Evidence-Based Complementary and Alternative Medicine, (3796265), 1-14. https://doi.org/10.1155/2021/3796265.
Section
Research Articles

How to Cite

Dissipation kinetics, decontamination and dietary risk assessment of imidacloprid residue in bitter gourd and soil. (2022). Journal of Applied and Natural Science, 14(4), 1507-1517. https://doi.org/10.31018/jans.v14i4.3912