Mukesh Kumar Mehla https://orcid.org/0000-0003-0948-4876 Mahesh Kothari Pradeep Kumar Singh Sita Ram Bhakar Kamal Kishore Yadav


Water security is essential for socio-economic development, ecosystem management, and environmental sustainability. An improved understanding of the relationships between water demand and supply is needed to mitigate the impacts of diminishing water resources. The present study aimed to assess the crop water footprint of sixteen major crops in the basin namely, bajra/ pearl millet (Pennisetum glaucum L.), barley (Hordeum vulgare L.), cotton (Gossypium herbaceum L.), gram/chickpea (Cicer arietinum L.), groundnut (Arachis hypogaea L.), guar/cluster beans (Cyamopsis tetragonoloba L.), jowar/ sorghum (Sorghum bicolor L.), lentil/ masoor (Lens culinaris L.), maize (Zea mays L.), mungbean (Vigna radiata L.), rapeseed & mustard (Brassica napus L.), rice/paddy (Oryza sativa L.), sesame (Sesamum indicum L.), soybean (Glycine max L.), urad/ black gram (Vigna mungo L.) and wheat (Triticum aestivum L.) was estimated during 2008-2020 in the Banas river basin of Rajasthan. The average annual water footprint of crop production varied from 11365.8-23131.5 MCM/yr (Mean 19254.5 MCM/yr) during the study period. Wheat, bajra, maize, rapeseed & mustard make up 67.4 % of the total average annual water footprint of crop production. The blue water footprint of crop production was 3942.1 MCM/yr, with wheat, rapeseed & mustard accounting for almost 87.0 % of the average annual blue water footprint. Blue, green and grey water footprints comprised 20.8, 69.7 and 9.5 % of the total WF of crop production in the basin, respectively. This assessment can play a significant role in developing better policies for properly managing water footprints for sustainable crop production in the basin.




Agricultural water footprint, Blue water footprint, Sustainable agriculture, Water scarcity, Water use

Chukalla, A. D., Krol, M. S. & Hoekstra, A. Y. (2015). Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrology and Earth System Sciences, 19(12), 4877–4891. https://doi.org/10.5194/hess-19-4877-2015
Chukalla, A.D.. (2017). Green, Blue, and Grey water footprint reduction in irrigated crop production. University of Twente, Netherlands. https://doi.org/10.3990/1.9789462337565
Chukalla, A. D., Krol, M. S., & Hoekstra, A. Y. (2015). Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrology and earth system sciences, 19(12), 4877-4891.Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management, 21(1), 35–48. https://doi.org/10.1007/s11269-006-9039-x
Hoekstra, A. Y. (2017). Water footprint assessment: Evolvement of a new research field. Water Resources Management, 31(10), 3061–3081. https://doi.org/10.1007/s11269-017-1618-5
Hoekstra, A. Y, Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. (2009). Water footprint manual. Water footprint network Enschede, The Netherlands.
Hoekstra, A. Y, Chapagain, A. K., Mekonnen, M. M. & Aldaya, M. M. (2011). The water footprint assessment manual: Setting the global standard. Routledge, London, United Kingdom.
Huang, J., Xu, C., Ridoutt, B. G., & Chen, F. (2015). Reducing agricultural water footprints at the farm scale: A case study in the Beijing region. Water (Switzerland), 7(12), 7066–7077. https://doi.org/10.3390/w7126674
Jovanovic, N., Pereira, L. S., Paredes, P., Pôças, I., Cantore, V. & Todorovic, M. (2020). A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agricultural Water Management, 239(April), 106267. https://doi.org/10.1016/j.agwat.2020.106267
Kampman, D. A., Hoekstra, A. Y. & Krol, M. S. (2008). The water footprint of India. Value Water Res. Rep. Ser. 32, 1–152.
Kashyap, D. & Agarwal, T. (2020). Food loss in India: water footprint, land footprint and GHG emissions. Environment, Development and Sustainability, 22(4), 2905–2918.
Kayatz, B., Harris, F., Hillier, J., Adhya, T., Dalin, C., Nayak, D., Green, R. F., Smith, P., & Dangour, A. D. (2019). “More crop per drop”: Exploring India’s cereal water use since 2005. Science of the Total Environment, 673, 207–217.
Khan, T., Nouri, H., Booij, M. J., Hoekstra, A. Y., Khan, H. & Ullah, I. (2021). Water footprint, blue water scarcity, and economic water productivity of irrigated crops in Peshawar Basin, Pakistan. Water (Switzerland), 13(9). https://doi.org/10.3390/w13091249
Mali, S. S. (2014). Crop Water Footprint Assessment for Sustainable Agriculture in Selected Sub-Basins of River Ganga, Doctoral Dissertation, Division of Agricultural Engineering Indian Agricultural Research Institute New Delhi.
Mali, S. S., Singh, D. K., Sarangi, A., Khanna, M. & Parihar, S. S. (2019). Assessment of water footprints in Betwa River basin under limited data availability. Journal of Agricultural Engineering, 56, 122–135.
Mali, S. S., Singh, D. K., Sarangi, A. & Parihar, S. S. (2018). Assessing water footprints and virtual water flows in Gomti river basin of India. Current Science, 115(4), 721–728.
Mekonnen, M. & Hoekstra, A. Y. (2013). Water footprint benchmark for crop production. Value of Water Research Report, 64, University of Twente, Netherlands.
Mekonnen, M. M. & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011
Nouri, H., Stokvis, B., Chavoshi Borujeni, S., Galindo, A., Brugnach, M., Blatchford, M. L., Alaghmand, S., & Hoekstra, A. Y. (2020). Reduce blue water scarcity and increase nutritional and economic water productivity through changing the cropping pattern in a catchment. Journal of Hydrology, 588(June), 125086. https://doi.org/10.1016/j.jhydrol.2020.125086
PIB. (2020). Water Availability in India https://pib.gov.in/PressReleasePage.aspx?PRID=1604871
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2016). AquaCrop version 5.0 reference manual. Food and Agriculture Organization of the United Nations, Rome, Italy.
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2018). Chapter 1: FAO crop-water productivity model to simulate yield response to water: AquaCrop: version 6.0-6.1: reference manual. Rome: FAO, 2018b. 19p.
Rao, J. H., Hardaha, M. K., Vora, H. M. (2019). The Water Footprint Assessment of Agriculture in Banjar River Watershed. Current World Environment 14, 476–488. https://doi.org/10.12944/cwe.14.3.15
Steduto, P., Hsiao, T. C., Fereres, E. & Raes, D. (2012). Crop yield response to water (Vol. 1028). Food and Agriculture Organization of the United Nations Rome.
Vanuytrecht, E., Raes, D., Steduto, P., Hsiao, T. C., Fereres, E., Heng, L. K., Vila, M. G. & Moreno, P. M. (2014). AquaCrop: FAO’s crop water productivity and yield response model. Environmental Modelling & Software, 62, 351–360.
Zhuo, L., Mekonnen, M. M., & Hoekstra, A. Y. (2014). Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrology and Earth System Sciences, 18(6), 2219–2234. https://doi.org/10.5194/hess-18-2219-2014
Zhuo, La & Hoekstra, A. Y. (2017). The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Frontiers of Agricultural Science and Engineering, 4(2), 185–194. https://doi.org/10.15302/J-FASE-2017149
Research Articles

How to Cite

Assessment of water footprint for a few major crops in Banas River Basin of Rajasthan. (2022). Journal of Applied and Natural Science, 14(4), 1264-1271. https://doi.org/10.31018/jans.v14i4.3896