##plugins.themes.bootstrap3.article.main##

Anurag Yadav Kusum Yadav

Abstract

Cumin (Cuminum cyminum L.) is a versatile annual herb cultivated in the Middle East, India, China, and Tunisia. The seeds of this plant are primarily used in cooking as common food additives and traditional medicines to treat hypolipidemia, cancer and diabetes. However, cumin plants have poor germination and weak establishment rate, particularly under drought stress. The present study aimed to examine the growth promotion potential of cumin plants treated with talc and glycerol-based phosphate solubilizing bacteria (PSB) consortia. Four efficient  PSB were isolated from the rhizosphere of Calotropis procera and Solanum lycopersicum and identified through 16S rRNA sequencing as Pseudomonas nitritireducens MF351819, Klebsiella pneumoniae MF351845, Erwinia sp. MF351846 and Pantoea dispersa MF351847. In a nursery experiment on cumin (Cuminum cyminum) plants, 15 treatments of single, dual, triple and quadruple combinations of four PSB isolates were formulated on glycerol and talcum powder-based bacteriological carriers. The 100-day pot experiment was initiated during the winter of 2016 (the last week of October) containing loamy sand soil of Sardarkrushinagar, Gujarat. The formulations were applied to pot soil containing seven-day-old cumin seedlings. With glycerol-based PSB inoculations, the P14 treatment containing a consortium of K. pneumoniae MF351845, Erwinia sp. MF351846, and P. dispersa MF351847 provided the highest per plant seed yield of 0.19 g. With talc-based PSB inoculations, the P11 treatment containing a consortium of K. pneumoniae MF351845, Erwinia sp. MF351846, and P. nitritireducens MF351919 produced the highest per-plant cumin seed yield of 0.42 g. Overall, talc-based PSB consortial treatments improved height, dry weight, 100 seed weight and yield of the cumin plant.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Cumin plants, Bacteriological carriers, Glycerol, PSB, Talc

References
Arpitha, P. & Brahmaprakash, G. (2016). Evaluation of different packaging materials for microbial inoculants. Journal of Pure and Applied Microbiology, 10(2), 1131-1135.
Bashan, Y., Kamnev, A.A. & de-Bashan, L.E. (2013). A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biology and Fertility of Soils, 49(1), 1. doi: https://doi.org/10.1007/s00374-012-0737-7.
Bhardwaj, G., Shah, R., Joshi, B. & Patel, P. (2017). Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar Co99004. Journal of Applied Biology and Biotechnology, 5(1), 47-52. doi: http://dx.doi.org/10.7324/JABB.2017.50108.
Chen, Y., Fan, J.-B., Du, L., Xu, H., Zhang, Q.-H. & He, Y.-Q. (2014). The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Applied Soil Ecology, 84, 235-244. doi: https://doi.org/10.1016/j.apsoil.2014.05.014.
Dey, S., Dutta, P. & Majumdar, S. (2019). Biological control of Macrophomina phaseolina in Vigna mungo L. by endophytic Klebsiella pneumoniae HR1. Jordan Journal of Biological Sciences, 12(2), 219-227.
Dutta, S. & Podile, A.R. (2010). Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critical reviews in microbiology, 36(3), 232-244. doi: https://doi.org/10.3109/10408411003766806.
Faravani, M., Koorepaz, S., Gholami, B. & Zare, Y. (2012). Biological effects of fertilizer treatments on growth, yield and yield components of black cumin. Herba Polonica, 58(4).
Ghosh, A., Pramanik, K., Bhattacharya, S., Mondal, S., Ghosh, S.K., Ghosh, P.K. & Maiti, T.K. (2021). Abatement of arsenic-induced phytotoxic effects in rice seedlings by an arsenic-resistant Pantoea dispersa strain. Environmental Science and Pollution Research, 28(17), 21633-21649. doi: https://link.springer.com/article/10.1007/s11356-020-11816-7.
Jamir, A.R., Chattopadhyay, N. & Momin, M.C. (2021). Effect of biofertilizers with various levels of inorganic nutrients on growth and yield of black cumin (Nigella sativa L.) var. Azad Kalonji. Environment Conservation Journal, 22(1&2), 73-78. doi: https://doi.org/10.36953/ECJ.2021.22 1212.
Jiang, L., Jeong, J.C., Lee, J.-S., Park, J.M., Yang, J.-W., Lee, M.H., Choi, S.H., Kim, C.Y., Kim, D.-H. & Kim, S.W. (2019). Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Scientific Reports, 9(1), 1-13. doi: https://doi.org/10.1038/s41598-019-52804-3.
Kaur, G. & Reddy, M.S. (2014a). Influence of P-solubilizing bacteria on crop yield and soil fertility at multilocational sites. European Journal of Soil Biology, 61, 35-40. doi: https://doi.org/10.1016/j.ejsobi.2013.12.009.
Kaur, G. & Reddy, M.S. (2014b). Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Archives of Agronomy and Soil Science, 60(4), 549-564.
Khanna, V. & Sharma, P. (2011). Potential for enhancing lentil (Lens culinaris) productivity by co-inoculation with PSB, plant growth-promoting rhizobacteria and Rhizobium. Indian Journal of Agricultural Sciences, 81(10), 932.
Kumar, A. & Rai, L.C. (2020). Soil organic carbon and phosphorus availability regulate abundance of culturable phosphate-solubilizing bacteria in paddy fields. Pedosphere, 30(3), 405-413. doi: https://doi.org/10.1016/S1002-0160(17)60403-X.
Li, J., Zhang, S., Shi, S. & Huo, P. (2011). Mutational approach for N 2-fixing and P-solubilizing mutant strains of Klebsiella pneumoniae RSN19 by microwave mutagenesis. World Journal of Microbiology and Biotechnology, 27(6), 1481-1489. doi: https://doi.org/10.1007/s11274-010-0600-7.
Mishra, B., Lal, G., Sharma, Y., Kant, K., Saxena, S. & Dubey, P. (2019). Effect of microbial inoculants on cumin (Cuminum cyminum Linn.) growth and yield. International Journal of Seed Spices, 9, 53-56.
Moradi, A. & Piri, R. (2018). Enhancement of salinity stress tolerance in Cumin (Cuminum cyminum L.) as affected by plant growth promoting rhizobactria during germination stage. Journal of Plant Process and Function, 6(22), 47-53.
Nguyen, C., Yan, W., Le Tacon, F. & Lapeyrie, F. (1992). Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus Laccaria bicolor (Maire) PD Orton. Plant and Soil, 143(2), 193-199. doi: https://doi.org/10.1007/BF00007873.
Olsen, S. (1982). Phosphorus. Chemical and microbiological properties, 403-430.
Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B. & Kamili, A.N. (2021). Chemical fertilizers and their impact on soil health, Microbiota and Biofertilizers, Vol 2. Springer, pp. 1-20.
Pahari, A., Pradhan, A., Maity, S. & Mishra, B. (2017). Carrier based formulation of plant growth promoting Bacillus species and their effect on different crop plants. International Journal of Current Microbiology and Applied Sciences, 6, 379-385.
Panwar, M., Tewari, R., Gulati, A. & Nayyar, H. (2016). Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiologiae Plantarum, 38(12), 1-12.
Patel, B., Aiuiin, A. & Patel, K. (2004). Response of cumin (Cuminum cyminum) to integrated nutrient management. Indian journal of agronomy, 49(3), 205-206.
Patel, S., Amin, A., Patel, S., Agalodiya, A. & Patel, S. (2013). Effect of different sources of organic manures with and without bio fertilizers in cumin (Cuminum cyminum L.). International Journal of Seed Spices, 3(2), 54-58.
Piri, R., Moradi, A., Balouchi, H. & Salehi, A. (2019). Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Scientia Horticulturae, 257, 108667. doi: https://doi.org/10.1016/j.scienta.2019.108667.
Pishva, Z.-K., Amini-Dehaghi, M., Bostani, A. & Naji, A.-M. (2020). Biological and chemical nitrogen fertilizer impact on cumin Cuminum cyminum under different irrigation regimens. Journal of Herbmed Pharmacology, 9(3), 209-217. doi: https://doi.org/10.34172/jhp.2020.27.
Qureshi, M., Ahmad, Z., Akhtar, N., Iqbal, A., Mujeeb, F. & Shakir, M. (2012). Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. Journal of Animal and Plant Sciences, 22(1), 204-210.
Ranjan, A., Mahalakshmi, M.R. & Sridevi, M. (2013). Isolation and characterization of phosphate-solubilizing bacterial species from different crop fields of Salem, Tamil Nadu, India. International Journal of Nutrition, Pharmacology, Neurological Diseases, 3(1), 29.
Sadiq, H.M., Jahangir, G.Z., Nasir, I.A., Iqtidar, M. & Iqbal, M. (2013). Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere soil. Biotechnology & Biotechnological Equipment, 27(6), 4248-4255.
Schollenberger, C.J. (1927). A rapid approximate method for determining soil organic matter. Soil Science, 24(1), 65-68.
Sedigh, A., Azizi, K. & Azizi, F. (2014). Studying the effects of biological and chemical fertilizing systems on yield and yield components of cumin (Cuminum cyminum L.). International Journal of Agriculture and Crop Sciences, 7(2), 60.
Sehrawat, A., Yadav, A., Anand, R., Kukreja, K. & Suneja, S. (2017). Enhancement of shelf life of liquid biofertilizer containing Rhizobium sp. infecting mungbean (Vigna radiata L.). Legume Research, 40(4), 684-690.
Shivran, A., Sastry, E., Shekhawat, K., Mittal, G. & Rajput, S. (2012). Effect of plant growth promoting rhizobacteria on growth and yield of cumin (Cuminum cyminum L.). International Joural of Seed Spices, 2(2), 30-33.
Shravanthi, G.V., Panchatcharan, P., Rani, S. & Ambikapathy, V. (2019). Screening of potassium solubilzing bacteria and their growth promoters. Journal of Pharmacognosy and Phytochemistry, 8(2), 661-664.
Singh, N.K., Patel, D.B., Chaudhari, S.R., Morad, B.G. & Rabari, S.M. (2016). Characterization of phosphate-solubilizing isolates of Bacillus from cumin rhizosphere. International Journal of Tropical Agriculture, 34(6), 1469-1480.
Singh, R. & Rao, A. (2011). Response of cumin (Cuminum cyminum L.) cultivars to nutrient management practices in arid zone of Rajasthan, India. Journal of Spices and Aromatic Crops, 15(1).
Tamreihao, K., Ningthoujam, D.S., Nimaichand, S., Singh, E.S., Reena, P., Singh, S.H. & Nongthomba, U. (2016). Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiological Research, 192, 260-270. doi: https://doi.org/10.1016/j.micres.2016.08.005.
Viruel, E., Erazzú, L.E., Martínez Calsina, L., Ferrero, M.A., Lucca, M.E. & Siñeriz, F. (2014). Inoculation of maize with phosphate solubilizing bacteria: effect on plant growth and yield. Journal of soil science and plant nutrition, 14(4), 819-831.
Wang, Y.-N., He, W.-H., He, H., Du, X., Jia, B., Zeng, Z.-P., An, M.-L. & Chen, G.-C. (2012). Pseudomonas nitritireducens sp. nov., a nitrite reduction bacterium isolated from wheat soil. Archives of Microbiology, 194(10), 809-813. doi: https://doi.org/10.1007/s00203-012-0838-6.
Wernke, M.J. (2014). Glycerol, Wexler, P. (Ed.), Encyclopedia of Toxicology (Third Edition). Academic Press, Oxford, pp. 754-756.
Winters Jr, E. & Smith, R. (1929). Determination of total carbon in soils. Industrial & Engineering Chemistry Analytical Edition, 1(4), 202-203.
Yadav, A. & Yadav, K. (2016). Variable survival ability of rhizobacteria in cumin (Cuminum cyminum L.) rhizosphere. Journal of Applied and Natural Science, 8(3), 1699-1703. doi: https://doi.org/10.31018/jans.v8i3.1025.
Yadav, A. & Yadav, K. (2018). Survival of plant growth promoting rhizobacteria (PGPR), Recent Advances in Microbiology. Nova Science Publishers, pp. 87-110.
Yadav, A., Yadav, K. & Vashistha, A. (2016). Phosphate solubilizing activity of Pseudomonas fluorescens PSM1 isolated from wheat rhizosphere. Journal of Applied and Natural Science, 8(1), 93-96. doi: https://doi.org/10.31018/jans.v8i1.754.
Yadav, A., Yadav, K. & Vashistha, A. (2017). Response of phosphate solubilizing pseudomonad on the growth of Abelmoschus esculentus (L.) Moench. New Agriculturist Journal, 28(1), 197-202.
Zaker Tavallaie, F. & Khorramdel, S. (2012). Effect of phosphorus biofertilizers on the yield and yield components of dwarf black cumin (Nigella sativa l.), National congress on Medicinal Plants.
Zala, H.N., Bosamia, T.C., Kulkarni, K.S. & Shukla, Y.M. (2014). Physiological and biochemical characterization for drought stress at seedling stage in wheat genotypes. International Journal of Bio-resource and Stress Management, 5(3), 386-394. doi: http://dx.doi.org/10.5958/0976-4038.2014.00585.5.
Zhang, L. & Birch, R. (1996). Biocontrol of sugar cane leaf scald disease by an isolate of Pantoea dispersa which detoxifies albicidin phytotoxins. Letters in Applied Microbiology, 22(2), 132-136. doi: https://doi.org/10.1111/j.1472-765X.1996.tb01126.x.
Zhang, L. & Birch, R. (1997a). Mechanisms of biocontrol by Pantoea dispersa of sugar cane leaf scald disease caused by Xanthomonas albilineans. Journal of Applied Microbiology, 82(4), 448-454. doi: https://doi.org/10.1046/j.1365-2672.1997.00135.x.
Zhang, L. & Birch, R.G. (1997b). The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proceedings of the National Academy of Sciences, 94(18), 9984-9989. doi: https://doi.org/10.1073/pnas.94.18.9984.
Section
Research Articles

How to Cite

Comparative growth analysis of cumin plants (Cuminum cyminum L.) treated with glycerol and talc based phosphate solubilizing bacterial consortia. (2022). Journal of Applied and Natural Science, 14(4), 1374-1386. https://doi.org/10.31018/jans.v14i4.3859